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1. Consider a cylindrical container Z of homogeneous compo-
sition, partly filled with a Volume V of liquid, and
situated in outer space in the absence of_gravity (fig 1).
According to the PrinCiple of Virtual Work, the free sur-
face S will be determined by the condition that\the poten-
tial energy of the system is stationary with respect to
all variations consistent with the constraints. We assume
a surface S in the form z = u(x,y) over the base  ; the
energy - up to multiplicative and addiﬁive constants and
modified by a volume constraint term with Lagrange para-

meter 2H -~ then takes the form
(1) E =95 - BQ + 2HV

where B is a constant corresponding to the attractive force,
over the wetted‘surface Q, between the liquid and the con-
tainer. Here and in what follows, symbols such as S, Q, V
will be used alternatively, to denote both a set and its
measure.

The variational principle leads to the relations

- (2) div Tu = 2H in O

with

(3) Tu =

and

(4) v * Tu = B on I = 3R ’



where Vv is the unit exterior normai on I. Denoting by Y
the angle between S and Z on the manifold of contact,
we find Vv * Tu = cos Y. Thus, we may rewrite (4) in
the form

(5) vV * Tu = cos Y = const on X.

We note from (2), (3) that H is exactly the mean
curvature of the surface S, taken as positive when the

surface curves upward. Integrating (2) over © yields
(6) 2H = — cCOS Y

and thus (2) takes the form
(7) div Tu = —%— cos Y in &

The constant Yy is determined by the physical properties
of the materials. Once it is known, the problem becomes a
geometrical one : to determine a surface of prescibed
constant mean curvature that meets prescribed boundary
walls in a prescribed constant angle. Alternatively the
problem can be viewed as that of finding a solution of é
certain nonlinear elliptic equation under nonlinear bound-
ary conditions.

i .
In what follows we assume O <Y < =5 ; the remaining

2 1

case reduces to that one under the transformation u = -V.



(8)

(9)

(10)

(11)

It was pointed out in [1] that the problem (5), (7)
need not always have a solution. Consider an arbitrary
curve I', which together with a subset I* < I bounds a

subdomain Q* < Q(fig 2). Integration of (7) over Q* yields
(ELQ* - Z*) cosy = [v * Tu ds
L T

But for any differentiable function f(x,y) there holds

v
ITf| = = < 1

71 + |vE|2

We have proved :
A necessary condition for the existence of a solution
of (5), (7) in Q Zs that

e(Tr) = ({% Q* - Z*)cos Yy +T >0.

Ffor every T of the type considered.
Let us examine this result in the special case in which
2 contains a corner of opening 2a (fig 3). We find, for the
indicated T,
©(T) = 21(sin o - cos y) + (1°).

Letting 7 -0, we obtain immediately the result that <f

o 4+ v < /2 there is no solution to the indicated problem.
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The difficulty does not arise from the boundary dis-
continuity at V. One sees easily that the same contra-
diction can be obtained when the boundary is smoothed
at V. Thus we are faced with an elliptic boundary value
problem that arises directly from physical considerations,
which is in general not well-posed, even in a smooth
convex domain.

The condition we have found is remarkable in that it
is sharp. Let I be a regular polygon and ¢ the circum-
Scribed circle(fig 4). A lower hemisphere through ¢
provides an explicit solution of (5), (7) for the case
@ + vy = m/2. The solution is analytic up to the polygonal
walls and continuous in the closed region. Replacing the
hemispere by spherical caps of increasing radius, we find
explicit solutions of the problem for any Yy satisfying
@ + Y 2 7/2. Thus, in general the solutions to(5), (7) in
a given domain depend discontinuously on the boundary
datum y. In the example cited, as y decreases from m/2 to
—%' - o, the solutions exist and remain uniformly bounded
and analytic in Q. But if v < —%— - 0, no solution exists.

The behaviour just described was verified experimentally
by NASA in a "drop tower", which provides about five seconds
of "free fall" without gravity. If o + vy 2 ©/2 the
spherical cap solution is obtained; if a + y < 7/2 the fluid
flows up into the corners to infinity or to the top of the

container, whichever comes first.
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We point out here that whenever a solution exists,

i1t is uniquely determined up to an additive constant.

We wish to characterize geometrically the condifions under
which a solution will exist. Some such (necessary) con-
ditions are given in [1, Theorem 3]. Giusti [2] obtained
the basic theorem that Zf (10) %Zolds for every subdomain 0%,
then a solution exists. Chen [3] considered the case y % 0.
He showed that <f a disk of radius R, = —%— can be roZZed
around t interior to 2, then a solution exists.
The condition is sufficient but not necessary, as Chen
showed by example. In seeking necessary conditions, Chen
introduced the notions of "neck domain" and "tail domain".
A subdomain * < @ as above is called a "tail domain" if T
is a circular arc of radius —%— that meets I tangentially
and if there is no other such arc T interior to 9* (fig 5).
Chen showed that <f @ containe a tail domain, then no
solution exists for Y = O.

In [4] the case of general Yy is considered and it is

shown that a solution exists Zf and only Zf there is a vector

= z
field w(x) in 8, with divw = - in , vow=1o0n1l,
and |w| < Eégfy in . For certain figures, a field w can be

constructed explicitly. For example, for the parallelogram
of fig. 6 with coordinate origin at the point of symmetry,

the field w = (u,v) with



(12)
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u = __l___{“(%

- 1) '
a sin 2o a) ¥ cot 2“]

1
V = ——— Y

b sin 2a

has the indicated properties whenever o + y > 7/2, and
thus a solution exists in that case. Since, as we have
shown, there can be no solution when o + y < /2, the
result is sharp. |

It is tempting to seek a corresponding result for
general polygonal figures; consider however the trapezoi-
dal figure of fig 7. According to the above result, if
a = b (that is, for any rectangle) there is a solution
whenever vy = m/4. However it can be shown that for any
Y < m/2 and any € > O, there is a trapezoid with ]“"%l < g,
]%% - 1| < e, in which the problem (5), (7) has no solution.
Thus, the criterion for a rectangle (or parallelogram) does
not apply to a trapezoid. If %} <y < %% a new kind of
discontinuous (or at least unstable) dependence seems to
appear; an arbitrarily small deviation from the rectangular
configuration, throughout which the condition o + vy > w/2

holds uniformly, can lead from existence to nonexistence

of a solution.



3. In seeking general conditions forexistence of solutions,
we may try to minimize ¢(I'). A comparison with the energy
expression (1) shows that there is an exact analogy, in
which S, B and 2H are replaced, respectively, by T, cos Yy
and %%— cos Y. Thus we are confronted with the same type
of variational problem as the original one, the only dif-
ferences keing that it is now a problem in one lower dimen-
sion, in which the container has a general, rather than

cylindrical, form. We obtain immediately that any minimizing

z
curve I must be a curve of constant mean curvature H = o cos ¥
. . Q
and ne cirecular are of r = —— and
hence a eircular a f radius RY T Gos v v

that T must meet I in equal angles Y, as measured interior
to Q*,

Such a curve T may or may not exist, and we must examine
the two cases.

Case 1 : There is no curve [ satisfying the indicated con-
ditions . Consider a minimizing sequence of pairs of
points'{pj,qj} on I, and corresponding Tj < Q. Since I* is
bounded by X, the Tj are bounded in length, hence admit a
convergent subsequence for which.pj, qj tend to points p, g
(not necessarily distinct) on Z. The limit curve T must
coincide with I*, since if it contained a subarc in © it would,
by hypothesis, not satisfy the necessary conditions and
hence not provide a minimum. Thus Q* = 4, m(F) =
= (1 - cos vy)I* 2 O, hence (10) holds for every I'c Q and

by Giusti's theorem a solution exists.
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Thus, the nonexistence of an extremal curve T that
meets I in equal angles Y Zs a sufficient condition for
existence of a solution of (5), (7) in Q.

Case 2 : There exists an extremal T with the indicated
properties. We examine the configuration from the viewpoint
of the classical calculus of variations and ask whether T
can be embedded in a field.

Lemma : Any two diametrically opposite points on an
extremal curve T are conjugate to each other in the sense
of Jacobi. Tﬁese points are conjugate to mo other points
on T.

Hence, <f the arc T under consideration is a subarc of
a semicircle, a field embedding is possible and it foZZows
that T provides a strict relative minimum for the func-—
tional @w. If T strictly includes a semicircle, 1t will not
provide even a local minimum.

We may thus restrict attention to extremal arcs T that
are subarcs of semicircles (of radius RY = 53%5—;> and
which meet I in equal angles Yy (measured within Q%*). Every
such arc provides a strict relative minimum @ for o; in
order to obtain information with regard to existence of
solutions we must determine whether @ is positive or not.
As an example, we recall the "tail domain" of Chen (for Y = 0).
Chen was able to show that in every such configuration,

®m < 0, so that no solution will exist.
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4. A configuration appropriate to the present considerations

(13)

is provided by the trapezoid, of which we illustrate one

side adjacent to the line of symmetry in fig.8. We restrict
attention to values y 2 4%- - 0, since otherwise the corner
condition will exclude existence. We suppose also; for
reasons of technical implicity, that a > 7/6. The following
results can be demonstrated. For sim’o(fCi'fy) we have normalized 0.+

i) Given 7, Yy, with

E‘\)l =

- a £ v < 20, there is a unique
circular arc I' of radius RY' meeting I in equal
angles y. ' appears as in the figure, although it
need not always lie interior to the trapezoid. (If
Y 2 2a, no such T exists, and thus the problem (5),
(7) has a solution).

ii) There holds T > §. There holds 8§ > O if and only <f

both inequalities

)
1(2 + 1 cos 2a)
cos vy > cos 20
(2=2)7 cos 20 - 4 >
(L - 2)7 cos 200 - 4 >0
—

are satisfied. If &6 < O a solution exists. If
§ > 0, T provides a local minimum ¢, for o). a
solution of (5), (7) exists for the given T if and
only if Cn > 0.

iii) For fixed o and all sufficiently large 1, there
8 a uniquey = Yeor _ for which (13) holds and for

which ¢ = O. A solution of (5), (7) exists Zf and
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iv)

V)

(14)

(15)

vi)

only Zf v > Yor:

For fixed o, let 7 increase. Then Yeor and ﬁhe
corresponding acr both increase.

For fized a, let 1l-o, Then Ycr'jkzu’ and setting

.Ucr = 20 - YCI"

lo 2 -» 2 sin 4o
cr

1 2 sinZa
—— 8cr -

/7 1-2sin?a

For fixed o, fix 7 large enough that Gcr > 0.

Let Yj be a decreasing sequence such that Yj‘ﬁx Ycr‘

For each Yj there is a solution u(j) of (5), (7);

unique up to an additive constant. We normalize the
solutions to vanish at a fixed point of O~ Q*,

Then (uniformly in compacta) u(j)% U a solution of
(7) in Q~NQ%, uIsw 20 ax. on Ty there holds
!Vu(j)]» w, The solution surface defined by U Zn

QNQ* 18 asymptotic to a vertical circular cylinder

r
over I

o 48 Fcr 18 approached from within

QNQ*,



5.

We note that the singular behaviour in the trapezoid

differs from that which occurs at the critical vy in a
corner. In the trapezoid the solution exists for a half

open interval Yor < vy £ w/2, and becomes singular as

Y‘\Ycr. In a corner of, e.g., a regulat polygon, the so-
lution exists for a closed interval %; - o <y < %} ’

then disappears discontinuously for smaller y. We note

also that at a corner, if o + vy 2 %} there is no mini-
mizing curve I', whereas if o + y < %% a minimizing curve
exists and yields always ¢@(I') < O (thus excluding existence).

For the trapezoid, minimizing curves I can occur for which

©(I') > 0 (see iii) of §4 above).

The trapezoid provides an example to show that a capillary
surface over a convex domain in the absence of gravity need
not be convex. See Korevaar [5] where an example is given

for the case in which the gravity field does not vanish.

From the point of view of general existence criteria, the
domain Q* of fig 8 provides a formal analogue, for y > O,

of the tail domain of Chen (see 2. above). However if

Y > Yo @ solution exists,. and we thus see that the result of

Chen does not extend to the case Yy # O. General geometrical
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necessary conditions, beyond those given by Theorem 3

of [1], remain to be formulated.
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Figure 5
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