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A Radon transform  in monogenic function theory .

Franciscus Sommen (*)
v State University of Ghent

Abstract. In this paper we study the multiple Taylor series expan-

————— ;;;; of a monogenic function, by making use of a Radon trans-
form in monogenic function theory.

Introduction. Im (3)), Hayman provedbthat every harmonic function
zZ = X + 1y, admits a multiple Taylor series expansion which
converges absolutely in the domain which is given by

{(x, ¥) «Rlixj+il< R}
In the several dimensional case Siciak studied this problem
in (5), by making use of the complex extension of a harmo-
nic function in the unit ball.
In this paper we generalize the result of Hayman for holo-
morphic functions to the theory of monogenic functions;
a theory which has been studied by Delanghe and Brackx in
(2) and which is a generalization of the theory of holomor-
phic functions to several dimensions.
We shall prove that every analytic function, of which the
multiple Taylor series converges in the interval
1-R,, R x ...x]-R, R [, R,> 0, ..., R > O,
admits a unique left monogenic extension to the domain

{u € mnnﬂ Jul + {u.l < R, ...,{uo\+tumS< Rm}.
Furthermore the multiple Taylor series of the extension
converges absoiﬁtely*innthis domain, and this domain is

optimal with respect to this type of convergence.

(*) Aspirant N.F.W.0. Belgium
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To this end, we construct a generalization:
P(u, ;), (u, Z) € rRMHx <™

of the function
(1-uz )", (u, z) eCxC |

which is holomorphic in Z and monogenic in u, and which is

used to generalize the classical Radon transform:

n R (Bo,4))— H(BO,1)), which is given by
(D) = <, (4-uz ) 1>,

to the theory of monogenic functions.

Preliminaries. In the sequel we always work with modﬁles of func-

tions with values in a complex Clifford algebra.

(1448
The complex Clifford algebra over “R is defined as follows:

Az{z—- aAeAﬂaAeC}

Ac Yye.., m

where €)= eq1... eqh , When A ={«4,...., qh} H u1<... <0Lh ’
and %‘z ey 1, e{kiz €y s k= 4,000,.m .,
The involution in 4 1is defined by a= ;Z;__ a, EA R

_ Ac{tye..,m} ™
e,= e‘A... eqh, where €)= eqh... e“(4 and eqj: —eqjl.

M
As /4 is isomorphic to fl , We may provide li with
Q.M
the € - norm.
) 4/1

Hence, \a\: ( 2~ \aAl ) .

AC*“,ooo,m} !
Furthermore it is easy to show that for any a, b € A' ’

la. b} < 2™ \alib] ..

et
A point (X, y4s. 5 Xp) of R shall be identified with
m
R -~
the Clifford number X, + X = X o+ b xj eJ .

A4 J=4
In this way'(R is imbedded in /L .
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There are several ways to define a product in a Clifford
algebra. In our theory the product in XL is defined by the
. 18
relations: € = -1 and ey ej + ej ey = 0 , whenever
k A3, k,J =1"'°:m°
MY
ret S < R be open and let f e C4CQ,4—) .

Then f is left ( resp. right) monogenic in JL if

m m
D'f=Zej§%—f=O(resp.fD=Z§__ fe =0)
j=0 J j=0 .J

~in §) .

The right‘A——module of left monogenic functions in 1 is
denoted by M (f,4). It is a Fréchet module for the
topology of uniform convergence on the compact subsets
of (1 . |

For the basic elementary function theoretic theorems
we refer to (2).

For any open subset fL of (EM R ?f(:L)(_(L.zdr) (resp.
QQIO(QqIA) ) is the left (resp. right ) module of A -
valued holomorphic funetions in {l . Hence its dual '
module:gfél)(ﬁ,A ) , consists of left linear A -valued

analytic functionals,

wm+ 1
Wy is the area of the unit sphere in iR .
I. Special monogenic functions .
™34
- - m
Let u = u, +u belong to ﬂz let 2 =X + iy = 2 ej zJ

J=1
™ ~ o
belong to €™ ana put <u1-Z> = D _U. Z. .
j=14 9 Y
. . - - .k
Then one easily shows that the functions ( <u, z> - u, z )
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> M4 G‘W
which are defined for (u, z) € R *Q _ are left and right

Mt -3 m
monogenic for u € R and holomorphic for 1z € C.

Furthermore, when f is a € -valued holomorphic function

in ‘z € &N|z|-<e} »f > O , admitting the Taylor series ex-

m .
pansion f(z) = E; Cy 2K , then the function f(u.z) ,
=0

(u, z) ¢ G,, can be generalized immediately to the function

o2 - M+ 4 o
(1) Pu, 3) = 2 o (<8, 2> -u, 205, (u, ) e R =xC",
k=0

'y
which is left and right monogenic in u and holomorphic in 7,

In the followimg theorem we study the convergence of the
o9

series ZZ Cy (<3: Z>-u_ 2 )k .
o)
k=0 oo
Theorem I. Let f(z) = 2. Cx zk be holomorphic in
—_— k=0
}z €€l |z| < f} , P > 0 . Then the series.
o
p Cy (<, z> - uon )k converges absolutely as a multiple
k=0

Taylor series of Uy geee Uy in the domain

M+ 4 m ¢ A m

fu @ % fugl ¢ Z 12000 o Tlugl izl <f ] .
a=4 m J:A

In the case 2z = X € , this domain is optimaly

Proof. As f is holomorphic for z ¢ € , |z} <@ and as

k m k
A 4 -k ! nd
(<&, B - uy, D - T ——— (cum) ° Ty 2 3
J-gokj:k ko.vookm. J=4

the domain of absolute convergence of the multiple Taylor

[*d
series Z:_ck (<ﬁ: Z> - u, z)k is determined by the
k=0

condition
o ‘ k -k m k.
k! )
gl Z—  —E a0 0 TT (Quyl () 9 < = 0.
J=0 .
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m
4.
For k_ =25 , s €N, - (- (T 2z )
o ia J
k oom
and for k = 2s +1 , s ¢ N, Z °- (-1 (x2.°% 7.
J=a
k m ko
-» 2 /
Hence, for any k_ ¢ m ,?\z Ol (3 \Zj\ y *
J=1
o 2%
snd when ?:xeﬂR \ = (z x;)t.

J=1
_?
Hence (*) is satisfied as soon as (u, z) satisfies the in-

equality
(m 2)1/1 n ‘ H ‘ <
lug | 554) zj\ + J{% usllzy f
—> g . . .
:and when 2 = X € ﬂ? , (*) is equivalent with this in-
equality. W

We give two important examples.

Example I,

© 4 - <0, 2> -u_ 2
—_— ~ S -
P(u, 2) 5 - (<&, 2> - u_ z)f = o
k=0 ° - » 2 1 2
(1 - <u, 2>) + ug 1z
J=4
is the generalization of (4 - uz)'1 , (u, z) ¢ €

Obviously P(u, z) is defined in the open domain

M4 o
U = ([R x € )\ S8, where S is given by the equations

2 2 1

(4 - <d, ) + uo2 \ZlT = <T, 7>+ uoo‘\?‘

(4 - <T, ) <@ 3> = ul<x, .
Example 2.
e o0

- -
Exp(u, ?) =22 (<u, z> =~ u, .Z)k
k=0 k!
<z, z>
= e~ Z7¢ cos(u }L z ) -

51n(u ) )
J= ’z J‘-""

J=1
The function Exp(u, j[: e. ) has been studied expllcltly

=4
by Brackx in (4).



In (8) we introduced another way to generalize holomorphic

functions. let f be‘holomorphic in {z eCll (2] < f&
P

and admit the Taylor expansion f£(z) = 2. ) 25 .

k=0
Then the function % f(%%) , (u, z) ¢ @ x (C \.‘ok )

is gemeralized to the function

~ -0k x
2 F 'Y = ?
() ®u, 1) = T G o <J§, u %> o

which is defined for (u, y) € bt ((R f1\{ §

such that |ul| <¢ly| , and which is left and right mono-
genic in both variables u and y separately.

In the following theorem we give a relation between the
above introduced generalizations of a holomorphic function.

Theorem 2. Let f(z) ='Z: Cy uk be holomorphic for \z| < f
S — k=0

and let F(u, ?) and PF(u, y) be the generalizations
of f(u.z) and % f(%}) , introduced in (1) and (2)
respectively. Then for sufficiently small r > 0 and

lul < pr ,
A f F(u, y) d¢, P(y, 2) .
Wm+s Z3B(O, T) y

Proof. Let ‘z ‘ <R ; J= 4 ceey I . 

F(u, ?) =

Then P(u, z) is left monogenic in

A=‘ue‘R \|\u\P+Z\u\<R4} .

Choose r > 0 such that B(O, r) = {u E(R “Iu] < r} = A .

Then A ’[ F(u, y) a6, P(y, 2)
Wmn+s 3B(O, T) J

is defined for |ul < pr and in view of (7) it admits a

Taylor series expansion which is exactly equal to
0

T ey (<8, - u T
c, (<u, z>-u_.z ) . B8
k-0 k ’ o)

- -



2., The Radon transform

In this section we study the monogenic version of the

Radon transform.

1)
Definition I. Let L « { be a domain of holemorphy
! ,
and let T ¢ J((l)(n.,ﬁ) .

Then we defime the Radon transform by

T(T)(u) = <Tz , P(u, 2) > .

wmy
Definition 2. Let N = R 1be open and let T e M:(!l,li) .

Then we define the converse Radon transform by

A(DY(Z ) = <T,, P(u, 2) > .

Observe that both T and ,fv are generalizations of the
classical Radon transform

TD(2) = éryy (A= wz)™' >, 1 e H(N),
and that Tl (T.a) = T (T).a and ,p(a.T) = anr(TY
for all a € 14.
Il maps complex analytic functionals into left monogenic
functions and TL maps analytic functionals in the mono-
genic sense into holomorphic functions.
In this paper we study the image of the transforﬁ T in
some special interesting cases,
Let R, >0, ...y Rm >0 . Then we put:

a. B(Ryy «-v5 R) = Z € @qnﬂ lzjl < Rj}

m m
b: P(Ryy -+ep Ry) = fu e iRmHvll j% Ry |uyl +J§‘;‘433 |u | < 4}

Ce b(R,\, s 0y Rm) J

de p(Ryy +eny By) = B (RO .. Dy (RY)

where pj(Rj) = {u e K™l lujl + luol < Rj’} .

17« ™) ?‘:4 R, Jzyf < 4]

iy



Furthermore we put

K1y (BRy, oeey RY)

and

H (13(B(Rys wevy BRYD)

1§m>1gd 9’8(1)(13(121 v &y cvey By +E),4)

L]

L}

1i ind b 9 999 ”“i
Em>18 78(1)( (R, +€, , Ry, +€) )

In Theorem 3 and Theorem 4 we give a characterization
|
of W(ge(l)(E:(R,p sy Rm))) .

Theorem 3. Let T € ;’f('l)(B(RA,' ceey R -

Then TI(T)(u) 1is left monogenic in P(R,, ..., Rm) and

its multiple Taylor series converges absolutely

in P(R1, ceesy Rm) . Furthermore ©P(R,, ..., Rm) is optimal
for the absolute convergence of multiple Taylor series of
monogenic functions.

Proof. Let T € ‘jekl)(B(R1, «++y R )) . Then for each £>0

there exists CE > 0 such that

<T, < cC | y(z
AR S - S L LR

for every \§ ¢ j{l)(E(R4 + 26, seoy Ry + 28)) .

Let u € P(Ryy sosy Rm) be fixed and choose £ > 0 such
that u € P(R4 + BEy veoy Ry + 2€) . Then for fixed u ,
P(u, 3) € :%%l)GB(R,1+ 26, seey R, + 28)) gnd hence,
T(T)( u) is defimed in P(R1, ooy Rm) .

Furthermore,

<TZ , (<ﬁ: Z> - uO'Z >
k k k m
k!
=%:-——_ uo°...um<TZ,(-“z*)°“rrz.J>
z k !-o-k' m “’4 J
k. 70" """ "m"’ Jj=

J=0"]



and

k m k.
\<75 , (-2 ) ° }:E 2 J 5|

. k m k.
< C sup >0 J
Tt g(Rna,...,me)‘Z\ JLL ‘Z‘j‘

m &ko/,b m kj
<G (2 (Ry+£)) D‘(Rj+£)

J= 4
Hence,
. k k k m k.
k !-:‘-ok ! z ,j='1 J
J.Ekjr.k o m

m m AR
<0, (L lugl(Ry + &) + [ug| (L By + £
J=4 J=1
EACE 8&)1‘ , for some § > 0 ; which implies that
the multiple Taylor series of T(r)(u) converges
absolutely in P(R1, ceoy Rm) .
/

Furthermore, &(R“....,Rm) € ;?(l)(B(R“ censy Rm))
and m m

- R, u, - 2
(8 Yu) = 22 Ryt ¥ fm By o

P(R,y e esRp)

4 T v
(- 45 Ry ug) + Yy 45 Ry

admits a multiple Taylor series, which, in view of

Theorem I, converges absolutely in P(R,, «.., Rm)
. 9
L

but not in any point outside of P(R,, ««., B;m) .
This means that P(R,, ..., Rm) is optimal for the ab-
solute convergence of multiple Taylor series of monogenic

functions. W

Theorem 4. let f ©be left monogenic in P(R,, «+., Rm)
such that the multiple Taylor series of f converges
absolutely in P(R,y +++s Ry ) . Then f =T(1?) for

!
some T € 76(1)(3(31, seey R

-9—
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froof. In view of (4), one easily shows that the mapping

I~

m ~ =
T gy — <Tp, - T3,z )T = (DA

I
is a topological isomorphism between :%?l)(B(R cooy Rm)Zb
and fJe(r)(b(R4, eeey Ry )) e ( and also between

1y 6B, wuny By and  HL(BR,, eeny By)) W)
On the other hand, f‘u =0 admits a multiple Taylor series
o

k | k
see g U ) = ZE- ;Z:“ u1’ n

e @ u a
* Tm 4k1,...,km

expansion:

f‘u°=0(u4’

J)=:4k33k
which converges absolutely in ‘ u G‘R ] Z; lua] R. < 1}
I'— N J=1
. A
Hence, f(}'\’ e ;m)agog‘k} 31!1 4""’km ’
J=273%

which is the holomorphic extension of f‘u =O(u4, coey um)
o

belongs to :%%r7(b(R*’ ceny Rm)) .
Hence f,u O<u4’ eeey U ) = <T—a, P(u, 3) >,“o=° , for

some T € iﬁ%l)(B(R4, eeey R )) e

As analytic functions in open subsets of ﬂk admlt unique
left monogenic extenbions to open subsets of‘R ( Theorem 6.)’
we obtain that f(u) = <TP P(u, 2) > . 8

In view of Theorem 3. and Theorem 4 , TT(’E?i)(B(RA, ooy Rm)))
coincides with the right module of left monogenic functions

in P(Ryy «eey Rm) of which the multiple Taylor series
converges absolutely in P(R,, ..., Rm) .

In an analogous way one shows:

~-I0-~



Theorem 5h1r(ﬁe£l)(5(R1, ceoy Rm))) coincides with the
right module of left monogenic functions in p(R;, +.., Rm)
of which the multiple Taylor series converges absolutely

in p(R,, +ee, Rm) .

3. The Cauchy-Kowalewskl extension theorem .

™ ~ A1
Let Jl < @ be open. Then an open subset L of E&u is
M+
called a normal open neighbourhood of Loin K when
¢

for each point u € L , u =u , the set

+
44 - 9\,
\x ER ﬂx =X, + U and x € fl§ is connected and con-
tains one point of L .
In (6) we showed the following Cauchy—KowalewSki type

extension theorem.

" :

Theorem 6. Let flcle be open and let f T©be an A—— valued

analytic function in ). . Then there exists a. normal open
~ Mt

neighbourhood L of fL in m and a left monogenic

[

function £’ in {1 such that £’ (X + xoﬂ%ﬁzg (¥ ) .
Furthermore, if f, and f; are left monogenic extensions
of f 1in open normal neighbourhoods ?L, and ?1‘ of Jl,
then.ﬁqfifilis a normal open neighbourhood of fL ana |
ﬂ\ﬁpﬁj f‘”&nﬁ; Hence there exists a unique left monogenic
extension of f which is defined in a maximal open and
normal heighbourhood of ML .

In the following theorem we give a characterization of the

multiple Taylor series convergence of the'Cauchy—Kowalewski

extensions of a special class of analytic functions.

-II-



12

Theorem 7. Let f(zi, ceey zm) be an ,A/- valued holo-
morphic function in B(R1, ooy Rm) and let f(X,, «oe, xm)
be its restriction to [RM. Then f(X,, «.., xm) admits a
unique left monogenic extension. f(xo + Q') in

P(R,s ooy Rm) , Which admits an absolutely converging
multiple Taylor series expansion in p(R‘, cony Rm) and

which is given byo‘

k
f(xo+3'c’)=z (GaD) xg‘k Akf(x“ ceny X))
k=0 (2k)! .

[

k m o

_ 2 (=0 xHe+d (3 ej-_"l)_c)A”f £(X, s veny X))o
k=0 (2k +1)! g=4 9%

Furthermore D(R,, «.., Rm) is optimal.

Proof. As f(z1, ooy zm) € 2%10(3(31» ceey Rm)) s

. m -1
f( 9 eeey = <T L} 4 - $ -) > f
z, l zy) ? ( ;Ea }J 25 or some
T € w(l)(B(Rd L] * 00 Rm)) .

-
Hence by Theorem 5, f£(X,, «oey Xg) = <T?», P(x,Y ) >‘XO=O

admits the left monogenic extension: -

- g .
£(x, + X ) = <Ty, P(x, + X,3 ) > in P(R,y «oes Rp)
which admits an absclutely converging multiple Taylor
series expansion in p(R,y «eey Rm) .

On the other hand, one can easily show that

o
- 2 Lk
£1(x, + X ) - PARN GO AE £(xgy oovy xp)

k=0 (2k)! o
oo c u

D MR L) M S B SRS S .
k=0 (2k +1)! ° éé% d 3Xj ~m A * Tm

is left monogenic in p(Ry, ee., Rm) and that
-
f(x11 seey Xm) = f'(xo + X )\

-I2-
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Hence by Theorem 6, f = f' ,
We now show that D(Ry, s.., R ) 1is optimal.
Let u £ p(R,y eecy Rm) . Then for some J =4, ..., I ;
u £ pj(Rj) . One can easily show that the function
f(x) = (Rj - (x'j - X, e‘j))"‘i is left monogenic in
P(R s ceey Rm) and that its multiple Taylor series,
which is given by Rg‘ ki (RE‘(XJ. - x, ej))k ,

=0

converges absolutely for any x € p(R,y ooc, Rm) s

but not for x = u . @
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