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- (Chiba University)

For ordinary differential equations and functional dif-

ferential equations, there are many results concerning with

relationships between the total stability and the uniform asy-

mptotic stability (cf. [1, 5, 6, 8, 91).

For ordinary differential equations, Gorsin [*] and
Malkin [5] proved that, under fairly general assumptions,
uniform asymptotic stability implies the total stability., It
is known that the converse is not generally true (cf. [6]).
However, Masseral[6] proved that the null solution of linear
homogeneous system is uniformm asymptotic stability, if it
is total stable. Furthermore, Seifert [8] has extended Mas-

sera's result to the more general systems.

Massera's theorem. If the null solution of the linear

system
(%) x = A(t)x, x e RV,

where A(t) is nxn matrix and continuous on I, I = [0, =),
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isvtotallyrstable, then it .is uniformly asymptotically stable.

Definition 1. The null solution of (¥) is said to be to-

tally stable, if for any € > 0, there exists a &(e) > 0 such
that if g(t, x) is continuous and satisfies |g(t, x)| < &(g)
on [s, ») x R, |x| < e, for an s > 0, and if |X0| < 8(e),
then the solution of x = A(t)x + g(t, x) through (s, XO) sa-
tisfies |x(t)| < e for all t > s, where |x| 1s any norm of x e

R™.

Proof of Massera's theorem. If the null solution of (%)

is totally stable, there exists a § > 0 such that if |y0| <

§, the solution y(t, 8§, yo) of § = A(t)y + S8y, where ‘y‘ <1,
satisfies |y(t, §, yo)l < 1. But the solutions of both equa=
tions are related by y(t, S,'yo) = x(t, §, yO)ea(t B S’),
where x(t, ' §, yo)'is the solution of. (¥) through (S‘,vyo);

which proves theorem.

Suppose 0 < r <« is given. If x: [o=r, o+A) - Rn; A >:0,
is a given function, let Xy be defined'by xt(e) = x(t+6),; -r <
6 < 0, for each t ¢ [0, o+A).

Let Fn denote a set of R"-valued functions on [-r, 0] or’
=

, 0]. For linear functional differential equations

(%%) X = Ak, %),

where A(t, ¢) is continuous on I x Fn and linear in ¢.'¢ Fn’
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let x(t, s, ¢O) be the solution of (*#¥) through (s, ¢O). Then

0, 6(t ~ 8)

y(t) = x(t, s, ¢ )e , s e I, satisfies

0 0, 8(t - 8)

i(t, s, ¢ )e(S(t - s)

y(t) + 8x(t, s, ¢ )e

(t - 8)

= A(t, xt(s, ¢O)e6 + 8y(t)

- A(t, ed(t - S) x y(t + e )e—ﬁ(t + ¢ —S)) + (Sy(\t>
= A(t, y(t +¢) x e’8°> + §y(t)

= A(t, ) + sy(t),

6:7

where ¢ = {¢(+) x e~ | ¢ e F 1.

~J

If F = c([-r, 0], R™), i then, clearly, ¢ € C implies ¢ ¢
C for any § > 0. However, if Fn=CY’ Cy = {¢]|continuous on (-,
0], ¢(6)eYe > exists as 6 » -», y > 0}, ¢ E»CY does not imply
? € CY for some ¢ ¢ Cy. Hence if r = «, we can not apply Mas-
sera's idea for functional differential equations with infi-
nite delay to obtain the same result as that of Massera's.

We shall give the space B discussed by Hale and Kato [2].

Let B be a real linear vector space of functions mapping (-,

0] into R" with a semi-norm | - For any elements ¢ and ¢ in

B
B, ¢ = ¢y means ¢(t) = P(t) for all t € (-», 0]. The space B is
assumed to have the following properties:

(I) 1If x(t) is defined on (-», a), continuous on [o, a),

o < a, and X, € B, then for t e [0, a),
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(I.1) x_ € B,
(I.2) =x,_ is continuous in t with respect to |=|B,
(I.3) there are a K > 0 and a positive continuous func-

tion M(B), M(B) » 0 as B > «, such that Ixtl < K sup |x(s)| +

B 0ss8st

M(t—o)lxclB.

(I1) |¢(0)]| < Ml|¢|B for M; > 0.

Consider the system
(1) Cox(8) = AL, x),

where A(t, ¢) is continuous in (t, ¢) € I x B and linear in ¢.
Then we have |A(t, ¢)| < L(t)|¢|B for a continuous function

L(t) on I. Assume that L(t) is a constant, that is, there

exists an L > 0 such that
() IACt, ¢)] < L|¢|B on I x B,

Remark. It is known that if A(t, ¢) is almost periodic
in t uniformly for ¢ € gﬁ, 5% = {¢ € B; |¢|B < H}, then Condi-
tion (A) holds good.

We shall give some definitions of stabilities.

Definition 2. The null solution of (1) is said to be to-

tally stable, if for any € > 0 there exists a §(g) > 0 such

-y -



¢
that if g(t, ¢) is continuous and satisfies |g(t, ¢)| < 8(¢)
on [s, «).x B., for an s 2 0 and if IQP[B < 8(e), then the sol-
tion x(t) of
(2) x(t) = A(t, Xt) +. g(t, Xt)

through (s, ¢°) satisfies lx(t)| < e for all t > s.

Definition 3. The null solution of (1) is said to be uni-

formly stable, if for any e > 0 there exists a §(e) > 0 such
that if s > 0 and |¢OIB < 8(e), then the solution x(t) of (1)

through (s, ¢O) satisfies |x(t)| < e for all t > s.

Definition 4. The null solution of (1) is said to be uni-

formly asymptotically stable, if it is uniformly stable and if
for any € > 0, there exists a T(e) > 0 such that the solution
x(t) of (1) through (s, ¢O), s> 0, |¢O|B < 1, satisfies

|x(t)| < e for all t > s + T(e).

Remark. These concepts of stabillities obviously require
that |¢(0)| < e if ]¢[B < 8(e). This property is guaranteed by

Property (II).

Theorem. Suppose that the space B has properties (I) and
(IT) and A(t, ¢) satisfies the condition (A). Then, the null
solution of (1) is totally stable if and only if it is uni-
formly asymptotically stable.
-5 -
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We shall use the following lemma to prove the necessity
part in Theorem. It can be proved by using the standard argu-

ments. For details, see [3].

Lemma. The null solution of (1) 1s totally stable 1if and
- only if for any € > 0 there exists a §(e) > 0 such that if
g(t, ¢) 1is continuous on [s, ©) x B, s € I, and satisfies
lg(t, xt)l < 8(e) as long as x(t) is continuous on [s, tj,

|x(t)] < e for t > s and Ixsl < 8(e), then any solution x(t)

B
- of

x(t) = ACt, x.) + g(t, x)

through (s, x ) satisfies |x(t)| < € for all t > s, as long as

it exists.

Proof of theorem. First, we shall show the sufficiency

of the condition. It is known by Sawano[7] that if the null
solution of (1) is uniformly asymptoticaliy stablé, then there
exists a continuous real—valued functional V(t, ¢) définéd on
I x B which satisfies the foliowing conditions:

(a.1) l¢lg ¢ V(t, ¢) < N|¢|g, where N is a constant.

(a.2) |v(t, 1) - V(t, 02| < Nlot - ¢°].

A

(a.3) V1y(t, ¢) = 1im sup{V(t+s, ) = V(t, ¢)}/8 <
+
§+0

-cV(t, ¢), where x(t) is the solution of (1) through (t, ¢)

Xe+6

and ¢ is a positive constant.
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(The phase space considered by Sawano[7] is slightly dif-
ferent from ours. however, i1t is not difficult to see that the
hypotheses in Sawano's paper play their role almost only throu-
gh the relation (I.3). Furthermore, it is known by Kato[4] that
the concept of uniform asymptotic stability given by Sawano 1is
equivalent to ours under the properties (I) and (II).)

Hence, by using same arguments as in the proof for ordina—
ry differential equations, the sufficiency of the condition can
be proved.A

(Clearly, in the above proof, we can drop Condition (A).)

Next, we shall show the necessity of the condition. We
note that the solutions of x(t) = A(t+s, Xt) behave in the same
manner as those of (1) for any‘fixed s > 0, because the unifor-
mities of L in (A) and of the total stability play the essen-
tial roles in the proof and the shape of A(t, ¢) itself has no
direct effect as we will see in the below. Therefore it will be
enough to show that for any € > 0, there exists a T(e) > 0 such
that the solution x(t) of (1) through (O, ¢O), [¢O|B < 6(1),
satisfies |x(t)| < e for all t > T(e), where &(-) is the one
given for the total stability of the null solution of (1).

Let x(t) be a solution of (1) satisfying IXOIB < 8(1),
and hence |x(t)| < 1 for all t > 0. The idea is that we find
a positive scalar continuous function u(ﬁ, e), for a given
e > 0, defined on (-», «) such that , _

(b.1) u(t, €) ¥-l for t < 0 and u(t, €) € ¢t oon (0, ),

(b.2) there exists a T(e) > 0 such that u(t, €) > 1/e¢ for

-7 -
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all t > T(e),

for which the function
(2) y(t) = ult, e)x(t)

satisfies |y(t)] > 1 for all t > 0, and then the proof will be
completed, because |x(t)| = |y(t)/u(t, e€)| < e for all t >
T(e) by (b.2).

We note that the function y(t) given byq(2) satisfies

linB = [XOIB < §(1) by (b.1l) and it is a solution of
(3) o y(e) = At y) + el y,)

with g(t, y,) = 4(t, e)y(t)/ult, e) + Alt, ult, e)x,) - Alt,
yt). Therefore,‘in order fo show that the>solution y(ﬁ)'of (3)
given by (2) satisfies |y(t)| < 1 for all t > 0, it is suf-
fic¢ient to find a conditibn”for u(t, €) to guarantee that
lg(t, yt)l < 8(1) as long as |y(t)| < 1 by Lemma, because the
null solution of (1) is totally stable. The following condi-
tions together with (b.1) and (b.2) will be sufficient for our
purpose:

(b.3) |u(t, e)/ult, €)| < §(1)/3 for all t > O,

(b.4) u(t, €) < 2/e for all t > 0,

(b.5) |u(t, €) - u(s,‘ejl < min{&(1)/3LK, 1/3LM}, if
It - s| < S(e), where S(e) is chosen so that LM(S(e))(l +

(2/e))(K + M (1)) < 8(1)/3 and M = sup M(B).

-8 -



82

In fact, if |y(s)| < 1 for all s < t, we have |u(t, €)y(t)/

u(t, €)

nA

8§(1)/3 by (b.3) and |A(t, ult, e)x.) - A(t, y)| ¢

Liu(t, e)xt

nA

- v lg ¢ LK sup |u(t, e)x(s) - y(s)| + M(t -
TSsst ;
) |ult, e)xT - yTIB} < L{X sup |u(t, €) - u(s, )| + M(t -
TSsSt

T)Iu(t,*e)xT - yTIB , where v = max{t - S(e), O0}. Since'lelB <

K sup |x(s)]| + M|x

< K + M§(1) and similarly IyTI < K +
Ogsgf

OIB B =

‘Mé(l), it follows from (b.4) that M(t - t)]|u(t, e)x_ - yTIB <

M(S(e))(1 + (2/e))(K + M§(1)) ¢ 6(1)/3 if 1 > 0, while M(t -

A

) ]u(t, e)xT - yTlB Mju(t, €) - 1|6(1) if t = 0. Thus we

A

have |A(t, u(t, s)xt) - A(t, yt)l 26(1)/3 by (b.5), that is,

lg(t, v )| = [0(t, e)y(t)/ult, €) + A(t, ult, e)x.) - Alt,
y)| ¢ 10le, e)y(e)/ult, e)| + |A(t, ult, e)x.) - A(t, y.)| <
§(1)/3 + 26(1)/3‘= §(1) as long as |y(s)| ¢ 1 for all s < t.

| Thus it is only left to show the existence of a function
u(t, ) satisfying the required properties (b.1l) through (b.5).

Such a function will be given by

(1 { 20t)/(1 + eat), if t

1A%

0,
1, if t < 0,

where we may assume € € (0, 1) and o = a(e) is a suitable po-
sitive scalar function which satisfies a(e) < m%p{é(l)/6,
1/6LMS(€); §(1)/6LKS(e)}. Easily we can see that u(t, €) is the
positive scalar continuous funcﬁion defined on (-», =) and
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u(t, €) ¢ ¢! on (0, ®) and u(t, €) satisfies all requirements

(b.1) through (b.5), since 0 < u(t, €) = a(2 - €)/(1 + sat)? <

20, U(t, €)/u(t, e) = a(2 - €)/(1 + eat) (1 + 2at) < 20, for all

t
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0 and lim u(t, €) = 2/¢.
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