goooboooogn
0 436 0 1981 0 218-232

218

Design, implementation and philosophy of Hyperlisp
By Masami Hagiya

(Univ. of Tokyo)

introduction

Hyperlisp (in its narrow sense) is a Lisp-like programming
language designed by Masahiko Sato, whose features (from the

theoretical point of view) are:

* Its domain of symbolic expressions 1is mathematically
neater than that of Lisp.

* Tt is a completely monotype language.

* ITts semantics is defined in ;' precisely constructive

(or operational) manner.

But many who have heard about Hyperlisp, especially those who are
actually using Lisp for practical purposes, say, "Hmmmm, it is
beautiful, elegant. But what are you going to do with it?' or
more directly, ‘What on earth is the aim of Hyperlisp?' Here in
this short paper, we try to answer such questions but it seems
quite difficult...

One of the principle motivations for the design of Hyperlisp
was to construct a verification system for (or about) Hyperlisp

by Hyperlisp itself. It may be worth comparing our approach with

219

that of, say, LCF[4] or FOLI[1l4].

ML META Hyperlisp

PP\ FOL Hyperlisp

In LCF, tﬁe object language (called PP\) and the meta language
(called ML) are entirely different languages, while in FOL, the
meta language (called META) is one of the theories of FOL. What
we are planning to do resembles the latter, but our approach is
much simpler: we are just going to implemenﬁ Gddel's Incomplete-
ness Theorem! (says Sato.)

‘The merits of this approach are:

* Only one language is 'required: towards a universal
language.
* We can easily construct arbitrérily high level

theories: metatheory, metametatheory, -

It seems that the technique of embedding into a >theory its
metatheory 1is now considered to be important in order to con-
struct extensible theorem provers, e.g. Boyer and Moore's[l] or
Brown's[2].

Moreover we believe that all the arguments including
metatheoretical ones should be carried out in a constructive (or
finitary in the sense of Hilbert) manner, because the construc-
tive method is the most fundamental in finite mathematics and the
theory of computation may be studied as a part of finite

mathematics. It is also practiéally important, since it requires

220

no highly mathematical notions such as c.p.o. or inductive limit.

At present we have designed and implemented the programming
language Hypeflisp, and are now constructing the theory of Hyper-
lisp, which, unfortunately, we cannot present in this paper. In
the following we give an overview of the language and its imple-
mentation without going into details. We refer the interested

readers to the references[8, 9].

Gddel numbering

Recall G&8del's Incompleteness Theorem([3]. In his proof, he
encodad terms, formulas etc. by natural numbers with the method
called Godel numbering or coding. This makes it possible to ex-
press a metatheorem about the natural number theory as a theorem
about natural numbers. But the coding he used was a theoretical
or conceptual one; it is almost impossible to implement a prover
or a proof checker on a computer using his coding directly.. This
is duz to the fact that N (the set of all the natural numbers) is

too simple as a data structre.

sex
We now search a data structure which is richer than N. The
first candidate is of course that of Symbolic expressions of
Lisp. But it has a problem: the set of atoms may be any set hav-
ing any structure. It means that the domain of Lisp Symbolic ex-
pressions is not a fixed data structure (or type) but rather a

type having a type parameter (which corresponds to the atoms).

221

In other words, lists and atoms have completely different struc-
tures; e.g. we cannot take the car of an atom.

Taking these into account, Sato defihed the symbolic expres-
sion of Hyperlisp as follows.

A symbolic expression (or sexp for short) . is an . infinite
leaf-free binary tree with a finite number of its nodes marked

(black). See the left figure.

4 masked nodes

We assume that those nodes outside the drawings are not marked.
Since only a finite number of nodes are marked in a sexp, it is
in fact a finite figure. The tree with no marked nodes is denot-
ed by 8. This plays a similar role as that of the natural number
2.

We have two selectors as in Lisp 1i.e. car and cdr; car
selects the 1left subtree and cdr selects the right subtree. 1In
Hyperlisp, car and cdr are total functions. Note that car(@) =
cdr (8) = 0.

We have two constructors cons and snoc. (snoc' is the re-

verse of “cons'.) They are defined as follows:

cons(x, y) = /\ ‘ shoc(x, y) = /\

Xy « x 7

cons (@, @) = @.

222

Finally we define the recognizer called atom:
atom(x) <=> the root of x is marked

The primitives of sexps are: car,; cdr, cons, snoc, atom and
the equality between sexps.
The set of all the sexps is denoted by S.

We set

A = {_x | atom(x) 1}

M =S8 ~-A

We call an element of A an atom, and an element of M a molecule.
Since cons: S * S -> M and snoc: S * S -> A are bijective,

we have the following set theoretic isomorphisms:

n
]

A+ M

A+ S * 58S

S *S +5 *5

{* denotes the cartesian product and + denotes the direct sum)
The second equation is an evidence that S is at least as rich as
the domain of Lisp, since in Lisp, we have S = A + S * S, where S
is the set of Lisp Symbolic expressions and A is the set of
atoms. (For this resemblence, we use the terminology ‘atom'.)
But the difference is that in Hyperlisp we also have A = S * §S;
this means that we can take the car of an atom.

Obviously, every sexp can be constructed from 0 by a finite

number of applications of cons and snoc;

223

e.qg.

= snoc(cons(snoc(8, @), snoc(@, @)), snoc(@d, 0))

From this, we have the folowing induction schema:

A (D) A(x) & Aly) -> A(cons(x, y)) & A(snoc(x, y))

A(t)

It will be utilized when we axiomatize S.

notation
We use two pairs of parentheses: (),

Dot notation:

(x . vy) cons(x, Yy)

[x . vyl snoc(x, Y)

List notaton:

(x « (y . (z . 2)))
[x . [y . [z . 0]]]

(x, vy, 2)

[x, vy, 2]

We cannot omit , in Hyperlisp.

natural numbers and literals

[1.

224

Because of the richness of the structure of S, we can easily
implement many important data structures in S. Take N as an ex-
ample.

We define r: N -> S as
r(g) = 0 r(n+l) = snoc(r(n), r(n))

By r, N is embedded in S. 'We regard N as a subset of S. E.g. 1
= [2 . 0].

Another importanﬁ data étrucfure‘is that of what we call
literals (which are strings of lowercases). In the present ver-

sion, we implement literals as follows:
“ab" = [(1, 1, @, 0, 0, 0, 1], [1, 1, @, @, B, 1, ©]]

where a is ascii 141 in octal i.e. 1100001 in binary.

Remember that natural numbers and literals are atoms.

evaluator
Hyperlisp is a programming language to do the computation on

S. In Hyperlisp, 1like 1in Lisp, a program or a function is
represented by a sexp. Then mathematically the semantics of Hy-
perlisp is given by the partial (recursive) mapping eval; S -> S;
eval (x) = z means that x is evaluated to z. Here we give the de-
finition of eval in Algol-like notaton.

eval (x)

= if atom(x) then apply(car(x), cdr(x))

else apply(car(x), evlis(cdr(x))) fi

evlis(x)
= if x = @ then 0

225

else cons(eval(car(x)), evlis{cdr(x))) fi

apply (£, x)
= if £ = @ then 0
elif atom(f) then
if £ = 1 then car(x)
elif £ = "eq" then
if car(x) = car(cdr(x)) then 1 else 0 fi
elif £ = "cond" then evcon(x)

(*) elif £ is defined then apply(the definition of f, x)

else apply(eval(f), x) fi
else
if car(f) = "lambda" then

eval (subst (x, car(cdr(£f)), car(cdr(cdr(£)))))

elif car(f) = "label" then

apply(subst (f, car(cdr(£f)), car(cdr(cdr(£f)))), x)

else apply(eval(f), x) fi_fi

evcon (x)

= if x = 0 then 0
elif atom(eval (car(car(x)))) then eval(car(cdr(car(x))))
else evcon(cdr(x)) fi

subst (x, p, b)

= if p =0 then b
elif atom(p) then point(x, car(p))
elif atom(b) then

snoc (subst (x, car(p), car(b)), subst(x, cdr(p), cdr(b
else cons(subst(x, car(p), car(b)), subst(x, cdr(p), cdr(b

point(x, q)
= if q = 0 then @
elif atom(g) then x
elif cdr(q) = @ then point(car(x), car(q))
else point(cdr(x), cdr(q)) fi

Literals are double-quoted. If we omit the line marked (*), we

will have “Pure Hyperlisp'.

reference language

Hyperlisp functions or data (they are all sexps) are writ-
ten in what we call the reference language of Hyperlisp, which is
an extension of dot and 1list notation. Natural numbers and
literals are of course permitted. Literals are not double-quoted

in the refernece language. (From now we will use X, y etc. for

)))
))) £

226

variables to avoid confusion.)

There are some abbreviations in the reference language:

X:y= (X%
£(ene) = (£, +00) £l...1 = (£, ...]

'x = 1{x] = [1, x]

The first one is intended to be used in a conditional expression
as- a conditional pair. The second one is used to write function
applications in a prefix way. The last one is for quotation; 'x
is always is evaluated to Xx. These notations make Hyperlisp pro-
gréms resemble Lisp programs written in meta—expressions.

For 1lambda and 1label expressions, special syntax is

prepared. We Jjust give an example:
Lambda ([X]; eq[X, 0])

where Lambda is the keyword for introducing the syntax and X is a
formal parameter, which we call a metaliteral. A metaliteral is
a string beginning with an uppercase. The above expression

denotes the following sexp:

"lambda”

" egll

The expression Lambda([Y]; eq[Y. @]) also denotes the same sexp.
Here we do not give the presice rule by which these expressions
are translated to sexps. Just understand that this is a very
complicated read macro 1like the back-quote macro of MacLisp or

other Lisps.

221

Function definitions are written as follows:
#null [X] = eqlX, 0]

By this, the above lambda expression is assigned to the 1literal

null.

remarks

X > z denotes eval(x) = z in this section.

Look at the definition of eval. When the sexp to be
evaluated 1is an atom, its car (i.e. function part) and its
cdr(i.e. argument list) are sent to apply just as they are, while
when it is a molecule, its argument 1list 1is argument-wise
evaluated by evlis and then sent to apply. Namely, the first
case is call-by-name, and the latter case is call-by-value.

We have only three primitive functions in the evaluator: 1,
eq and cond. (eq and cond are literals.) 1 is the identity

function: 1[x] > x i.e. 'X > Xx. eq represents equality.

x=y => eqlx, yl >1

%
=2

Yy => eqlx, yl >

Note that in Hyperlisp, every atom represents truth, and evary
molecule represents falsity. cond is for the . conditional expres-

sion, which resembles that of Lisp very much. 1Is it of the form:

cond[(eeey ooe)y

(ceer oee)y

10

228

(eeer ooe)]
We may also write

cond[... : ...

~,

.
.
.
-

; may be used in the place of ,.

The parameter binding of Hyperlisp is very much different
from that of Lisp; in Hyperlisp, the arguments are actually sub-
stituted in the function body. As an example let's define cons

as
#cons([(X, Y] = "(X . Y)

Now evaluate cons[a, b]. First, the first argument a and the
second argument b are (actually) substituted to X and Y 'in the
body '(X . Y) to yield '"(a . b). Next '(a . b) is evaluated to
yield the final value (a . b); i.e. cons[a, bl > (a . b). So we
can define cons in Hyperlisp. In Maclisp, using thg back-quote

macro, we can do the same thing:

(DEFUN CONS (LAMBDA (X Y)

X . ,Y))

We can also define car and cdr in Hyperlisp. The defini-

tions are:

fcar[X [X1 . X2]] 'X1

fcdr (X 'X2

[X1 . X2]]

11

229

where X is the first parameter and X1 is the car of X and X2 |is
the cdr of X. We can name any part of the argument list by such
declarations.

As an exercise, please try the following evaluations:

car((a . b))l > a
cdr{(a . b)] > b

cons(carf(a . b)1, 'c) > (a . ¢)
Finally we define the familiar append function as follows.

#append[X = (X1 . X2), Y]
= cond[null[X] : 'Y;

'l : cons('Xl, append[X2, Y]) 1;

summary

Here we summarize the features of Hyperlisp from the practi-

cal point of view.

* Programs may be written in a style which is similar to
that of meta-expressions of Lisp.

* The scope of a variable is static.

* No prog feature is prepared.

* There is no distinction between expr and fexpr; any
function may become expr and fexpr depending on how it is
called.

* Any part of the parameter‘(e.g. its car, cadr, caddr,

cadar etc.) may be named in a function.

12

230

* It has a feature similar to the back-quote macro of

Lisp; this is called Quine's quasi-quotation.

The last two save many of the explicit uses of selectors and con-

structors; e.g. compare the two definitions of the naive reverse:

#reverse[X = (X1 . X2)]
= cond{ null[X] : @;

'l : append(reverse{X2], '(X1l)) 1;

(DEFUN REVERSE (LAMBDA (X)
(COND ((NULL X) NIL)

(T (APPEND (REVERSE (CDR X)) (CONS X NIL))))))

implementation

The first interpreter([6] is implemented on PDPll under
UNIX([7]. A pointer 1is a PDPll word, i.e. consists of 16 bits.
There are 8K cells. The cell space is divided into H space and L
space (these are the terminology of HLISP[5]). S is implemented

in H space i.e. it is monocopied. The reasons for this are:

* Each atom may have a function definition.

* Literals should be put out as they are put in.

The size of H space and L space are the same. L space 1is used
for 1improving the efficiency of the interpreter. (We avoid the
actual substitution of the arguments in the function body as much
as possible in the implementation; for this, a kind of special

technique is devised, for which L cells are used.) We sketch how

13

231

a sexp is implemented: if

/7
G

Recently, we implemented the interpreter on VAX1ll under
UNIX, in which case, a pointer is 32 bit long. The cell space
consists of 32K cells now. 20 subrs are prepared.

In the present version (for both PDP1ll and VAX1ll), there are
two global environments; one is for function definitions, and the
other is for global values of atoms. The 1latter resembles the
property 1list of Lisp, because the values are extracted and up-
dated through explicit calls of subrs. Since the scope of Hyper-
lisp is static, this is indispensible for writing large programs.

(We are also planning to introduce progs.)

14

232

references

[1] Boyer, R. S., Moore, J. S.: Metafunctions: Proving Them
Correct and wusing Them Efficiently as New Proof Procedures,
Technical Report CSL-108, SRI International (1979)

[2] Brown, F. M.: An Investigation into the Goais of Research in
Automated Theorem Proving as Related to Mathematical Reasoning,
Artificial Intelligence 14, 221—242 (1981)

[3] Godel, K.: Uber formal unentscheidbare Siatze der Principia
mathematica und verwandter Systeme I, Monatshefte fur Mathematik
und Physik 38, 173-198 (1931)

[4] Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF, Lec-
ture Notes in Computer Science 78, Springer-Verlag (1979)

[5] Goto, E.: Monocopy and Associative Algorithms in an Extended
Lisp, TR74-03, Information Science Laboratories, Faculty of Sci-
ence, University of Tokyo (1974)

[6] Hagiya, M: Hyperlisp2.l Manual (not published)

[7] Kernighan, B. W., McIlroy, M. D.: Unix Programmer's Manual,
Seventh Edition, Virtual VAX-1l1l Version (1979)

[8) Sato, M.: Theory of Symbolic Expressions, TR80-16, Depart-
ment of Information Science, Faculty of Science, University of
Tokyo (1980)

(9] sato, M., Hagiya, M.: Hyperlisp (to appear)

[10].Weyhrauch, R. W.: Prolegomena to a Theory of Mechanized

Formal Reasoning, Artificial Intelligence 13, 133-178 (1988)

15

