goooboooogn
0 436 O 1981 0 233-260

233

Lazy Representation
for

A Proof of List Marking Algorithms

Satoru KAWAI

Department of Information Science
Faculty of Science
University of Tokyo

Tokyo 113

Japan



234

Keywords

Schorr-Waite algorithm, spanning tree,

program transformation



235

l. Introduction

Verifying algorithms which dynamically update data
structures is a hard problem because of the difficulty of finding
out invariants for the conventional inductive assertions. As a
fairly simple instance of such algorithms, the Schorr-Waite graph
marking algorithm is widely known [5]. This algorithm traverses
a part of directed graph and marks all nodes reachable from a
fixed root-node without using a stack for keeping track in the
traversing. 1Instead of the stack, the algorithm uses the chain
of nodes of the graph being traversed, altering the structure of
the graph itself.

Among many authors who presented the correctness proofs of
the Schorr-Waite algorithm, Gries [2] and Topor [6] attacked this
broblem with clear and intelligible formalisms giving convincing
proofs, though their principles of proof are different to each
other. Gries proved the algorithm mainly by reformulating the
program and data structure using the usual inductive assertions,
Topor, on the other hand, first presented some properties of list
structures, then proved the algorithm by the method of
intermittent assertion.

We present here a kind of proof of the correctness of the
‘algorithm with a different approach in which algorithms with
static data structure are first presentéd, later to be
transformed into one with dynamic data. The key of our approach
is that proofs should be made with simple and well-known conéepts

such as trees if the algorithms to be proved essentially work on



236

them. The mapping from simple data used for the proof to the
possibly complex data, together with the corresponding

transformation on algorithms, are then obtained.



231

2. Graph-Marking

We consider a directed graph on which the problem of marking

is defined in terms of graph theory and sequential algorithms.

As the basis of discussion, let G be a directed graph defined

as follows. '

(i) The set V(G) of nodes of G is {zl, Zor eeer zn} .

(ii) The set A(G) of directed lines of G 1is the union of two
sets L(G) and R(G) whose members are of the form (zi,
zj) (zi, szV(G)) and labeled by & and r ,
respectively. For each node z in V(G) , it is required
that there exist one and only one line of the form (z,
z')e¢L(G) and one and only one line of the the form (z,
2'')<R(G) . "

It is seen from the above definition that the out-degree of any

node in G is 2 and the two outgoing lines are labelled

differently. In what follows, we will use the notation  V(X)

and A(X) to denote the point set and the line set of a

graphical object X , respectively. Next, we define the

reachability in conventional fashion as follows.

For two nodes z. and z. in V(G) , we will write

i ]
z; & zj if (zi, zjk L(G) ,
zi LY zj if (zi, zjk R(G) .,
. 2 r
z; > zj if z; zj or z; > zj or both,.

A path s 1is a sequence of nodes (uo, Ugr eeer um) with the
properties,

(i) m=0 ,



338

(ii) u, > Uy for k=0, 1, ..., m-1 , and
(iii) uk;éuk , if and only if k#k' .
‘If there is a path from z, to zj (zi, zjeV(G)) , we will
write,

z; > zj
which means that z5 is 'reachable from' =z, in G .

i

Let H be the maximal subgraph.pg G., whose set of nodes
. V(H) is defined as {zilzieV(G) 1z 3 z;} . The task of
marking in this paper is, as in all other works on the list
marking, to mark in some fashion all nodes in V(H) .

It is worthwhile to note that the graph defined here is
slightly different from that of Lisp which includes another kind
of nodes, atom, with no out~going lines. The graph of Lisp,
however, can be simulated with our graph by introducing a special
node "atommark" which is marked from the beginning. The two
lines in an atom node are both made point to atommark., All"

algorithms in this paper behave at any atom node thus defined as

if there were no out-going lines from it.



239

3. Spanning Tree

A sequential algorithm which performs the task of marking
would traverse all the nodes‘in V(H) in some order, tracing
some spanning subgraph of H . We consider here a subgraph with
a special property, called the L-spanning tree of H .

A spanning subgraph T0 of H is called the L-spanning

tree with respect to z, if the following conditions are

satisfied.
(1) T0 is a directed tree with zy being its root.
(ii) Let so=(u0=zli Ugr eeer up=zk) and
sl=(v0=zl, Vir eeer vq=zk) be the paths from z, to zy
in T0 and in H , respectively. Then, for any i<p and

j<q such that ui=vj ; the following condition is

satisfied.
vy 4 Ui+l
or uy X u;,, and vy RS Vi+1

That is, the unique path in T0 from z, to some zkeV(To) is
the 'leftmost path' among all the paths from z, to z, in H
The target algorithm of this paper essentially traverses T0
though the target structure is dynamically modified.

Finally, let T be another directed graph defined as

follows.
(1) V(T) = V(T,) = V(H)
(ii) A(T) = A(TO) U P(To)

where P(To) is the set of directed lines labeled by P , and

defined as



P(To) = {(zil ZJ) |(zjl zl) €A(T0)}-
We will write, as before,
z; B zj if (z

ZJ) eP(TO) .

T is a tree in which every node except for the root is given a

il

'‘back pointer' to its parent, besides those to its left and right

sons (c.f. Fig. 1).



241

4, Basic Marking Algorithm

In order to construct marking algorithms, let the original
graph G be represented by the four integer arrays m , 2% ,
r , p of size n+l , indexed from 0 , as follows.
(i) al[i}=j if and only if z; $ zg where a=% , r , or
P . C
(ii) m[i]=0 for all i at‘the beginning of the algorithms.
The purpose of list marking is to set _m[j]=1: for all j
such that zjeV(H) and to kegp other m's unchanged.
(iii) £[0]=r[0]=1 , p[l]=p[0]=0 . This setting is equivalent
to introducing a new node z into V(G) , the line (zo,
zl) into both L(G) and R(G) , and the lines (zl( zO)
and (zo, ZO) into P(To) . This introduction is for .

simplification of the marking algorithms.

In what follows, algorithms are written in ALGOL68, with slight

modification where needed.



242

Algorithm AQ

[0:n]lint m,%,r,p;

#m, 2,r,p are appropriately initialized#

int q:=1;
while g#0

do m[q]:=1;
if 'm[2[q]l=0 then q:=2[q]
elif m[rlq]l]=0 then q:=r[q]
else q:=plq]
£i
od
By defining that a node z; is being yisited when g=i , this
algorithm can be considered to traverse the graph G in some

way. The traversing of a line (Zi' zj) is similarly defined.

Lemma l, Algorithm A0 traverses only the lines in A(T) .
Proof, Suppose that the lemma is not true. Let (zx, zy) be
the first non A(T) line traversed by A0 . Note that either

z, %2 or z, 24 Zy because a p-line is included only in

y
A(T) . Consider the paths

sx=(zl=u0, ul, eear up=zx)

and sy=(zl=v0, Vir eesr Vo =Z )

q Y
in Ty from z, to z, and Zg 1 respectively.
Case 1. 1If zy is on sx ; Wm[y] has been set to 1 before.

(zx, zy) is traversed because Sy is the unique path

from zq to Zy o Then it is seen from the algorithm



243

that zx 8 zy .

Case 2. When Zy is not on Sy 7 let 2z be the common point

between Sy and sy ; which is the farthest from z; .

Let 2z be u, =vy, (0<k<p, g-1) and up+1 be Zy o

Since both s and (uo, Ugr seer up, up+l=zy) are

Y
zy to zy in H , it is seen from the

definition of L-spanning tree that

z %

paths from

L

vk+l and z uk+1 .
It is seen from the algorithm that (z, uk+1) can be
traversed only after (z, vk+1) is traversed. Then,
since zy is included in a subtree in T0 whose root
is Vetl ! m{y] has been set to 1 before (zx, zy) is
traversed. Then z, Rz,

y

Both cases lead to contradiction,

Lemma 2, If AQ0 traverses only the lines in A(T) , it visits
all nodes in H and no other nodes in G , and always
terminates.

It is easily proved from the general property of tree and from

the fact that every line in A(T) can be traversed at most once,

Proposition l. A0 performs the task of marking H and always

terminates.



244

5. Reference restriction

Next, we consider the following algorithm which acts exactly
the same as A0 with respect to the way of ;raggrsing.
Algorithm Al |

[0:n}lint m,¢,r,p,h;

#m,2,r,p are appropriately initialized#

for i from 0 to n do hii]:=3 od;

int s,t;
int q:=1;
while gq#0
do m[qg]:=1;
if hlq]l:=0; s:=q; t:=elql; hlql:=1;
m[t]=0 then g:=t
elif - hlql:=0; s:=q; t:=r[ql; hlql:=2;
m{t]=0 then qg:=t
else h[q]:=0; s:=pl[ql; t:=q; hq]:=3;
q:=s
fi
od

A new array h 1is introduced in order to indicate which one of
the three pointers from each node is inhibited to be referenced.
The values 0, 1, 2, and 3 in h indicate that none, g , r ,
and p , respectively, cannot be referenced. When a reference to
a pointer is required, the 'h-lock' is released at first

(h[g]:=0) . It is easy to show that the following three lemmas

hold.

- 10 -



245

Lemma 3. No reference to 2[q] , r[gql , and plg] , is made in
Al when h[gl=1,2, and 3, respectively.

Lemma 4. During the execution of Al, it is always satisfied that
k=q if h{k]=0 .

Lemma _5; Algorithm Al traverses TO’ with the same node ordér as

AQ,

_ll_



246

6. Marking Algorithm with dynamic data

Up to the previous section we have developed marking
algorithms which uses the data structure with static pointers,
and proved the correctness of the algorithms. Our next step is
to prepare another data structure and to define a dynamic mapping
from the original structure onto the new one. More exactly, we
prepare new integer arrays a and b , and let the following
conditions always'be satisfied (Fig. 2).

For every node z; in H ,

when h[i]=3, a[il=2[i] and b[il=r[i] bhold,

when hl[i]=1, alil=p[i] and blil=r[i] hold,

when h[i]=2, al[il=g[i] and bfi]J=p[i] hold,

when h[i]=0, the values of a[i] and b[i] are

in some transient state from and to one of the above
three states.
In what follows, we will use the simultaneous assignation of the
form " a,b,c := d,e,f " in order to simplify the description of

algorithms, though it is not permitted in ALGOL6S.

_12_



247

_Algorithm A2
[0:n]lint m,2,r,p,h,a,b;
$# m,2,r,p,h are initialized as in Al # v
for i from 0 toc n do alil,bli]:=f[i],r[i] od;
int s:=0, t:=1, q:=1;
while q#0
do mlql:=1;
if hlqg]l:=0; s,t,alql,blg]l := q,¢lql,plal,riql;
" higl:=1; m[t]=0 then g:=t |
0; s,tralql,blal := q,rlal,glal,plal;
hlg]:=2; m[t]=0 then q:=
else h[q]:=0; s,t,alq],blq] := plal,q,z2lql,rlql;
hlq]:=3; q:=s

Lemma 6. At the start of the loop in A2, one of the following
three conditions is satisfied.

€, = {s=plal, t=q, alql=2lql, blgl=r[ql} when m[ql=0,

(@]
]

o = {s=q, t=¢lql, alql=plq]l, blql=riql} when mlql=hlq]l=1,
C; = {s=q, t=rlql, algl=2lq], blal=riqg]} otherwise.
Proof If mi{g]=0 at the start of the loop, the node zq has
not been visited before. Then a[g]l=2[q] and b[gl=r[q] are
assured by the initialization. Moreover, both s=plq] and t=q
are satisfied
(i) at the very beginning of the loop by the initial setting of

s , t and q , and

(ii) by the condition (m[t]=0) inspected in the previous

_13_.



243

execution of the loop.
Thus Cl is satisfied when m[q]l=0 .

On the other hand, m[gq]l=h[q]l=1 imply that the last
execution of the loop with respect to zq ended with the first
branch of the if clause (h[g]=1) , and that the latest ekecution
of the loop ended with the last branch (m[g]l=1) . Thus it is
seen that C2 is satisfied in this case. The last case for C3
is similarly treated. It is worth whilé to noteAthat,'in the
above proof, we happily use the propeftyvof traversing binary
trees.

Lemma 6 guarantees the important facﬁ that, when returning
to a node through a p-line, the condition satisfied at the end of
the previous visit to the node is recovered. This fact is a base
for the next algorithm. Another important fact is that, when

Ci (i=1,2,3) 1is satisfied, only cyclic shifts of values among
three of s , t , alg]l] and ‘b[q] are required in order £6
make Cj (j = 1imod 3 + 1) be satisfied. For exampie, when C1
is realized, C2 is satisfies by the simultaneous assignment

t, alql, bla) := blqal, t, alal.

Moreover, the value of g is contained either t (C or

1)
s (C, and Cy) . Then it is seen that all information for

Algorithm A2 to work correctly can be obtained from the two
arrays a ‘and b , together with s and t . Our next

algorithm uses only a, b, s , and t , omitting the accesses

to 2, r, p, and q .

- 14 -



‘243

Algorithm A3
[0:n]int m, ¢, r,p,h,a,b;
farrays are inifialized as in Az#
int s:=0, t:=1; #q is omitted from here#
while t#0
do if m[t]=0
then #Cl is satisfied#
mlt]:=1;
if Pii m[t]=0 then skip
elif P,; m[t]=0 then skip
else Pg
fi
elif h[s]=1
then #Cz is satisfied#
if P,; m[t]=0 then skip
else Py
£ _
else #C3 is satisfied#

Py

fi

{h[t]:=0; a[t],t,s := s,al[t],t; h[s]:=1},

]
]

g
]

{h[s]:=0; a[s],bl[s],t := t,als],bls]; h[s]:=2},
{h[s]:=0; b[s],s,t := t,bls]l,s; h[s]:=3};

o
]

The construct gkip is equivalent to the null statement which

appears in A3 in place of the now unnecessary statement "q:=t"

_';5 -



280

In algorithm A3, the values of m and h are used in order to
know how many times the node has been visited. The case selec-
tion by these values is necessary for adjusting conditions, Cl '

C or C

2 3 °

- 16 -



251

7. The target algorithm

Algorithm A3 is the result of a direct transformation
applied to A2 depending oh Lemma 6. We now simplify and fold A3
in order to obtainlthe target algorithm,

First, we simplify the range of the values in h to

{0, 1} because they are inspected only in the form
if his]=1 then... .
Thus the value 0 is used in place of 2 and 3 for the assigments

in P2 and P of the algorithm A3.

3 .
Next, consider the following two pieces of code.

Blz {if m{t]=0
then m[t]:=1; Pl;
if m[t]=0 then skip

else Sz3>ﬁi
elif h(s]l=1
then 823
else P,
fi}

B,: {if m[t]=0
then m{t]:=1; P,
elif hls]=1
then Sy,
else Pq
£i}

_17_



252

vhere
S,3 = {if P,; m[t]=0 then skip
else Pq
fi}
Note that B is the loop body of A B and B can be

1 3° 1 2
considered equivalent as the loop body of A3 if, when they are
applied to the data structures of the same status, the sequences
of execution of the components, ™"m[t]:=1" , P1 v 823 , and
P3 are identical. This equivalence is seen by checking a
"piecewise equivalence" as follows.
Case 1. m[t]#0. 1In this case, it is seen that the two identical
elif brances are executed by a single application of
Bl or B2 .
Case 2. m[t]=0 and m[a[t]]#0 . A single application of Bl

in this situation executes a component sequence

"m{t]:=1", P, , S

1 23

in this order. On the other hand, the same sequence is

executed by applying B2 twice. By the first

application of B2

"m[t]:=1", P1

is executed. The above P1 realizes the situation
m[t]=0 and h[s]=1 at the beginning of the second
application, yielding the execution of 823 .

Case 3. m[t]=m[alt]]=0. In this case, a single application of

Bl or B executes

2

"m[t]:=1", Pl

yielding new situations of either Case 2 or Case 3.

- 18 -



253

This "folding" is also applicable with respect to 823 and
P3  resulting the following loop body.
B,: fif m[t]l=0 then m[t]:=1; Py
elif h(s]=1 then P,
else P,
£i}

The final algorithm A4 is shown below. This algorithm is
obtained by replacing the loop body of A3 with B3. Algorithm A4
is aﬁ exact copy of the Schorr-Waite list marking algorithm
without atomic cells.

Algorithm A4

[0:n]lint m,h,a,b;

#arrays are initialized as in A3#

int s:=0, t:=1;

while t50

do if m[t]=0

alt],t,s := s,alt],t;

then al[s],bls],t := t,al[s],bls];
his] :=0
else b([sl]l,s,t := t,b[s],s

- 19 -



254
8. Discussion

As shown above, our proof consists of two parts. In the
first part, a straightforward data structure (bi-directional
tree) is introduced, on which simple élgorithms A0 and Al work.
It is easy to prove that they do the task»of marking’with respect
to the given data structure, owing tb the well-known simple
properties of the structure of bi-directicnal tree. The second
part of the proof is for a dynamic data structure which is first
manipulated through the pure side-effect of the revised‘aigorithm
A2, thus giving no influence on the correctness of the marking
algorithm. This data structure, togethér with the two.auxiliary
variables, is then shown to have full necessary inforﬁation for
the algorithm to work correctly. Algorithm A3 relys on this
point and works solely on the dynamic data structure. At this
stage of the proof, the original static data structure (for A0)
is transformed into the dynamic one (for A3). The techniques of
program transformations are used in order to obtain the target
algorithm A4, That is the story of our proof.

As stated before, Gries gave a proof of the Schorr-Waite
algorithm using inductive assertions [2, 3]. Though he used a
slightly modified formulation of the original algorithm in order
to make his proof convincing and easy to follow, if is believed
to be the first proof with convincingly detailed reasbning using
inductive assertions with a termination proof. On the other
hand, Topor [6] presented an interesting proof of the algorithm,

in which a series of facts (propositions) on the properties of

_20—



235

(partially) marked list structure is first introduced and proved.
The facts. are stated in terms of the status of the whole data |
structure. Then the correctness of the algorithm is proved by
the method of intermittent assertions [4].

It is not our intention to revive the cohtroversy about the
superiority between the_two methods; inductive and intermittent
assertions, What we want £o say is that inveétigation of the
behaviour of the algorithm to be proved shouldrbe made carefully
in order to present convincing proofs; For example, both the
above authors presented stack-based marking algorithms at the
beginning of their papers, stating that in the Schorr-wWaite
algorithm the graph itself does the jobiof stack. It is frue
that this is an aspect of the algorithm and many other authors
have tried to give the proof by transforming stack-based or
recursive algorithms into the target algorithm [1]. A father
inspection of the algorithm, however, would reveal slight but
non-trivial difference between the stack mechanism and the use of
graph nodes in the Schorr-Waite algorithm. During the course of
execution, the stack contains only the minimum information for
backtracking necesssary for the task of marking. A node is
removed away from the stack immediately after its right pointer
is traced. It is seen, théreﬁore, that only a subset ofrnodes oﬁ
the path from the root to the "current node" are retained in the
stack. In the Schorr-Waite algorithm, on. the other hahé,.ail;thé
nodes on the path are placed in the so-called "stack".

The above consideration made uslto realize another aspect of

the algorithm presented in this paper, which is based on bi-

- 21 -



156

directional tree and reference restriction. The analysis of the
Schofr-Waite algorithm through the latter aspect did, we believe,
help both the algorithm and the spaghetti of the data structure
to be well structured, though a kind of multistep proof is
required.

It is worthwhile to compare the two data structures
manipulated by the first algorithm A0 and the taréet algorithm
A4, It could easily be recognized that the final structure
represents in some way a part of the first structure. The way of
representation, however, is not static but dynamic. The essen-
tial point is when a full representation of a node is required in
the course of algorithm-application, that representation is
realized by the use of auxiliary variables, s and t . From
the analogy of lazy evaluation with respect to algorithms, the
above scheme of data manipulation could be called  the Lazy
Representation of data structures. 1In lazy representation
scheme, the full form of data\structure of a part of whole data
is éonstructed from other information when the full form is
truely required. Our proof in this paper reveals the existence
of this scheme in the Schorr-Waite algorithm, It would be
helpful to introduce the concept of lazy representation which has
been unconsciously confused to and mixed up in the term, lazy

evaluation,

- 22 -



257

Acknowledgement

The author gratefully acknowledges the many helpful
discussions with Dr. Teruo Hikita of Tokyo Metropolitan
University, who pointed out the importance of program

transformation in the proof method presented here.

- 23 -



258

References

1. Dershowitz, N.: The Schorr-Waite marking algorithm
revisited, Information Processing Letters, 11, 141-143
(1980) .

2, Gries, D.: The Schorr-Waite Graph Marking Algorithm, Acta

| Informatica, 11, 223-232 (1979).

3. Hoare, C.A.R.: An axiomatic basis for computer
programming, CACM, 12, 576-580, 583 (1969).

4, Manna, Z. and Waldinger, R.: Is "sometime" sometimes better
than "always"? Intermittent assertions in proving program
correctness, CACM, 21, 159-172 (1978).

5. Schorr, H. and Waite, W, H.: An efficient machine-
independent procedure for garbage collection on various list
structures, CACM, 10, 501-506 (197).

6. Topor, R. W.: The Correctness of the Schorr-Waite List

Marking Algorithm, Acta Informatica, 11, 211-221 (1979).

- 24 -



259

Figure 1. Graphs and trees in list marking algorithm.

original graph with'a root zq and line labeiling

G:
H: maximal subgraph reachable from zq

T
T: bi-directional L-spanning tree

: L-spanning tree.of H

o



260

o>

—>

®

X

h=1

h=2

f

6\

b
NI

h=3

Figure 2. Relation of static (p, £, r) and
dynamic (a, b) data.



