ON SEPARABLE POLYNOMIALS IN SKEW POLYNOMIAL RINGS

Shuichi IKEHATA

Department of Mathematics, Okayama University

Throughout this paper, B will mean a ring with 1, ρ an automorphism of B, D a ρ -derivation of B (i.e. an additive endomorphsim such that $D(ab) = D(a)\rho(b) +$ aD(b) for all a, b \in B). Let R = B[X; ρ , D] be the skew polynomial ring in which the multiplication is given by $aX = X\rho(a) + D(a)$ ($a \in B$). In particular, we set $B[X;\rho] = B[X;\rho,0]$ and B[X;D] = B[X;1,D]. By we denote the set of all monic polynomials g in R with gR = Rg. A polynomial g in $R_{(0)}$ is called to be separable if R/gR is a separable extension of B. f be a polynomial in $B[X;\rho]_{(0)}$ (resp. $B[X;D]_{(0)}$) such that the coefficients are fixed by ρ . As was shown in [3], if f', the derivative of f, is invertible in R modulo fR, then f is separable in R. In this case, f is called a $\tilde{\rho}$ -separable (resp. D-separable) polynomial. In this paper, we shall give some sufficient conditions for a separable polynomial to be $\tilde{\rho}$ -separable (resp. D-separable). The study contains some generalizations of the results of [3].

We shall use the following conventions: Z =the center of B, C(A) =the center of a ring A.

 $B^{\rho} = \{a \in B \mid \rho(a) = a\}, \quad B^{D} = \{a \in B \mid D(a) = 0\}.$ $u_r = \text{the right multiplication effected by } u \in B.$ $I_u = \text{the inner derivation effected by } u \in B;$ $I_u(a) = au - ua.$

 $\rho^*\colon B[X;\rho] \to B[X;\rho] \quad \text{is the ring automorphism}$ defined by $\rho^*(\sum_i x^i d_i) = \sum_i x^i f(d_i).$

1. In this section, we assume that $R = B[X;\rho]$ and f is in $R_{(0)} \cap B^{\rho}[X]$ with $\deg f = m$. First, we shall define the discrimnant of f. As was shown in [3, Remark 1.3], f is in $C(B^{\rho})[X]$. The free $C(B^{\rho})$ -module $C(B^{\rho})[X]/fC(B^{\rho})[X]$ has a basis $\{1,x,\ldots,x^{m-1}\}$, where $x = X + fC(B^{\rho})[X]$. Let π_i be the projection on to the coefficients of x^i . The trace map t is defined by $t(z) = \sum_{i=0}^{m-1} \pi_i(zx^i)$ ($z \in C(B^{\rho})[X]/fC(B^{\rho})[X]$). Then the discriminant $\delta(f)$ of f is defined by $\delta(f) = \det ||t(x^kx^l)||$ ($0 \le k, l \le m-1$). By [4, Theorem 2.1] and [3, Theorem 2.1], f is $\tilde{\rho}$ -separable if and only if $\delta(f)$ is invertible in B.

Lemma 1.1. $a\delta(f) = \delta(f)\rho^{m(m-1)}(a)$ for all $a \in B$. Proof. For $k \ge 0$, we put $x^k = x^{m-1}b_{m-1} + x^{m-2}b_{m-2} + \ldots + db_1 + b_0 \ (b_i \in C(B^{\S}))$. Then, we have $x^k \equiv x^{m-1}b_{m-1} + \ldots + xb_1 + b_0 \ (\text{mod } fR)$. Since $ax^k = x^{m-1}b_{m-1} + \ldots + xb_1 + b_0$

 $\mathbf{x}^k \rho^k$ (a) (a ϵ B), we have $a\mathbf{b_i} = \mathbf{b_i} \rho^{k-i}$ (a) and so, $a\pi_i(\mathbf{x}^k) = \pi_i(\mathbf{x}^k) \rho^{k-i}$ (a) (0 \leq i \leq m-1). Since $\mathbf{t}(\mathbf{x}^{\mathsf{V}}) = \sum_{i=0}^{m-1} \pi_i(\mathbf{x}^{i+\mathsf{V}})$, we obtain $a\mathbf{t}(\mathbf{x}^{\mathsf{V}}) = \mathbf{t}(\mathbf{x}^{\mathsf{V}}) \rho^{\mathsf{V}}(a)$. Then the assertion is now easy.

In the rest of this section, we assume that $f=X^m+X^{m-1}a_{m-1}+\ldots+Xa_1+a_0$ is a separable polynomial. Then by [3, Theorem A], there exists $y\in R$ with deg $y\in R$ with deg $y\in R$ such that $p^{m-1}(a)y=ya$ $p(a\in B)$ and p(a)=1 p(a)

Lemma 1.2. Assume that au = up n (a) (or p^n (a)u = ua) (a \in B) with an element u \in B and a positive iteger n. Then $f'(\sum_{k=0}^{n-1} \rho^{*k}(y)u) = (\sum_{k=0}^{n-1} \rho^{*k}(y)uf') \equiv nu \pmod{fR}$. Proof. Since $u \in B$, au = up n (a) and uy = yu, we have yu = uyp* n (y) = p^* (y)u. Hence $p^*(\sum_{k=0}^{n-1} p^{*k}(y) \cdot u) = \sum_{k=0}^{n-1} p^{*k}(y)u$. Then, noting $Y_j \in C(B^p)[X]$ ([3, Lemma 1.2]) and $f' = \sum_{j=0}^{m-1} Y_j y X^j$, we obtain $nu \equiv \sum_{j=0}^{m-1} Y_j (\sum_{k=0}^{n-1} p^{*k}(y)u) X^j = f'(\sum_{k=0}^{n-1} p^{*k}(y)u) = (\sum_{k=0}^{n-1} p^{*k}(y)u)f' \pmod{fR}$.

Corollary 1.3. $(f'\sum_{i=0}^{m-i-1} \rho^{*k}(y))a_i = (\sum_{i=0}^{m-i-1} \rho^{*k}(y)f')a_i \equiv (m-i)a_i \pmod{fR}$, for $0 \le i \le m-1$.

Proof. Since $f \in R_{(0)} \cap B^{\rho}[X]$, we have $aa_i = a_i \rho^{m-1}(a)$ $(a \in B)$ and $\rho(a_i) = a_i$ by [3, Lemma 1.3 a)].

Now, we shall prove the following theorem which contains a generalization of [3, Theorem 2.2] and a partially generalization of [5, Theorem 2.7].

Theorem 1.4. Let $f = x^m + x^{m-1}a_{m-1} + ... xa_1 + a_0$ be in $R_{(0)} \cap B^{\rho}[X]$. Assume that f is separable. If there holds one the following conditions (1) - (6), then f is $\tilde{\rho}$ -separable.

- (1) There exists a regular element u in B and a positive integer n which is invertible in B such that $au = u\rho^n(a)$ (or $ua = \rho^n(a)u$) (a ϵB).
 - (2) m(m-1) is invertible in B.
 - (3) Both a_0 and a_1 are regular elements in B.
 - (4) a_{m-1} is a regular element in B.
 - (5) $\rho \mid \mathbf{Z} = \mathbf{1}_{\mathbf{Z}}$ and m-1 is invertible in B.
- (5') $\rho \mid Z = 1_Z$ and m is in rad B, the Jacobson radical of B.
 - (6) $\rho \mid z = 1_Z$ and a_1 is in rad B.

Moreover, if (2) is satisfied then every separable polynomial in $R_{(0)} \cap B^{\rho}[X]$ is $\tilde{\rho}$ -separable.

Proof. Case (1). Let $v = u\rho(u) \dots \rho^{n-1}(u)$. Since $au = u\rho^n(a)$ ($a \in B$) and $\rho^n(u) = u$, we have $a\rho^{\nu}(u) = \rho^{\nu}(u)\rho^n(a)$ and $\rho(v) = v$. Since v is regular element in B, so is in R/fR. Hence by Lemma 1.2,

f' is invertible in R modulo fR. Thus, f is $\tilde{\rho}$ -separable.

Case (2) and (3). By [1, Lemma 1], there exist α , $\beta \in \mathbb{B}$ such that $a_0\alpha + a_1\beta = 1$. By Corollary 1.3, there exist z_1 , $z_2 \in \mathbb{R}$ such that $ma_0 \equiv f'z_1a_0$ and $(m-1)a_1 \equiv f'z_2a_1 \pmod{fR}$. Therefore, if both a_0 and a_1 are regular elements in B, f' is invertible in R mdodulo fR. Next, if m(m-1) is invertible in B, then f' is invertible in R mdoulo fR

 $m (m-1) \equiv f'((m-1)z_1a_0\alpha + mz_2a_1\beta) \pmod{fR}.$ Moreover, $a\delta(f) = \delta(f)\rho^{m(m-1)}(a) (a \in B)$ by Lemma 1.1, and $\delta(f)$ is invertible in B. Therefore, every separable polynomial in $R_{(0)} \nearrow{} B^{\rho}[X]$ is $\tilde{\rho}$ -separable by case (1).

Case (4). It is obvious by Corollary 1.3.

Case (5),(5') and (6). Obviously, (5') implies (5). We put here $y = x^{m-1}c_{m-1} + \dots + xc_1 + c_0$. Then we have

$$\begin{split} \sum_{j=0}^{m-1} \ Y_{j} y x^{j} &= \sum_{j=0}^{m-1} \ Y_{j} x^{j} \rho^{\star j} (y) \\ &= \sum_{j=0}^{m-1} (\sum_{\nu=j}^{m-1} \ x^{\nu} a_{\nu+1}) \rho^{\star j} (y) \\ &= a_{1} y \ + \sum_{\nu=1}^{m-1} \sum_{j=0}^{\nu} \sum_{\mu=0}^{m-1} \ x^{\nu+\mu} a_{\nu+1} \rho^{j} (c_{\mu}) \,. \end{split}$$

Comparing the constant terms modulo fR of the both sides, we have

 $1 = a_1 c_0 + \sum_{\nu=1}^{m-1} \sum_{\mu=0}^{m-1} \sum_{j=0}^{\nu} b_{\nu+\mu} a_{\nu+1} \rho^j (c_{\mu}),$ where b_k is the constant term of x^k modulo from

Since $ab_{\nu+\mu} = b_{\nu+\mu}\rho^{\nu+\mu}(a)$, $aa_{\nu+1} = a_{\nu+1}\rho^{m-\nu-1}(a)$ and $\rho^{m-1+\mu}(a)c_{\mu} = c_{\mu}a$ (a B), we have $b_{\nu+\mu}a_{\nu+1}\rho^{j}(c_{\mu})e$ Z. Since $b_{\nu+\mu}$, $a_{\nu+1}e$ B $^{\rho}$ and $\rho \mid z = 1_{z}$, we have $b_{\nu+\mu}a_{\nu+1}\rho^{j}(c_{\mu}) = b_{\nu+\mu}a_{\nu+1}c_{\mu}$. Then we obtain

 $1 = a_1 c_0 + \sum_{\nu=1}^{m-1} \sum_{\mu=0}^{m-1} (\nu+1) b_{\nu+\mu} a_{\nu+1} c_{\mu}.$

It is easily verifed that $b_{\nu+\mu}=0$ ($\nu+\mu\leq m-1$) and $b_{\nu+\mu}\in a_0^B$ ($\nu+\mu\leq m$). Since $(\nu+1)a_0^a_{\nu+1}=ma_0^a_{\nu+1}-(m-(\nu+1))a_{\nu+1}^a_0$, it follows from Corollary 1.3 that there exists $z\in R$ such that $1\equiv a_1c_0^-+f''z$ (mod fR).

Now, if a_1 is in rad B, then f' is invertible in R modulo fR.

Next, if m-1 is invertible in B, then $m-1\equiv (m-1)a_1c_0+(m-1)f'z\ (mod\ fR).$ Thus, f' is invertible in R modulo fR by Corollary 1.3 again. This completes the proof.

As an immediate cnsequence of Theorem 1.4, we have the following

Corollary 1.5. Assume that B is an algebra over a field of characteristic zero. Then every separable polynomial which is in $R_{(0)} \cap B^{\rho}[X]$ is $\tilde{\rho}$ -separable.

Corresponding to [2, Theorem], we have the following

Corollary 1.6. Assume that B is of prime char-

acteristic p > 0 and $\rho \mid z = 1_Z$. Then a monic polynomial $g = x^p + xb_1 + b_0$ in $R_{(0)}$ is separable if and only if b_1 is invertible in B.

Proof. First, we consdier the case p=2. Then by [3, Lemma 1.3], gR=Rg implies $\rho(b_0)=b_0$. Hence, if g is separable then it is in $B^{\rho}[X]$ by [3, Propostion 3.1]. Since $ab_1=b_1\rho(a)$ (a B), we have $b_1^{\ 2}=b_1\rho(b_1)$. Hence, if b_1 is invertible in B, then $b_1=\rho(b_1)$, and so $g\in B^{\rho}[X]$. Thus, the assertion follows from Theorem 1.4. Next, we consider the case p>2. Then by [3, Remark 1.4], gR=Rg implies g $B^{\rho}[X]$. Thus, the assertion follows from Theorem 1.4.

2. In this section, we assume that R = B[X;D]. The following theorem is a sharpening of [3, Theorems 2.7 and 4.4].

Theorem 2.1. Assume that $(b_n)_r D^n + (b_{n-1})_r D^{n-1} + \dots + (b_1)_r D = I_{b_0}$ with some $b_i \in B^D$. If b_1 is invertible in B, then every separable polynomial in R is D-separable.

Proof. Let $f = X^m + X^{m-1}a_{m-1} + \ldots + Xa_1 + a_0$ be separable in R. Then by [3, Theorem A] there exists $y \in \mathbb{R}$ with deg y < m such that ay = ya $(a \in \mathbb{B})$ and $\sum_{j=0}^{m-1} Y_j y X^j \equiv 1 \pmod{f\mathbb{R}}$. Since $b_i \in \mathbb{B}^D$, we have

$$(b_n)_r D^{*n} + (b_{n-1})_r D^{*n-1} + \dots + (b_1)_r D^* = I_{b_0}^*$$
.
Then

$$0 = yb_0 - b_0 y = \sum_{i=1}^{n} D^{*i}(y)b_i = D^*(\sum_{i=1}^{n} D^{*n-1}(y)b_i).$$
 We put here $u = \sum_{i=1}^{n} D^{*i-1}(y)b_i$. Then $Xu = uX$ and

$$Y_{j}u = uY_{j}$$
 ([3, Lemma 1.2]). Therefore, we have
$$b_{1} = \sum_{j=0}^{m-1} Y_{j} (\sum_{i=1}^{n} D^{*i-1} (y) b_{i}) X^{j}$$
$$= \sum_{j=0}^{m-1} Y_{j} uX^{j} = f'u = uf' \pmod{fR}.$$

Thus, f is \tilde{D} -separable by [3, Theorem 2.1].

References

- [1] S. Ikehata: On a theorem of Y. Miyashita, Math.J. Okayama Univ., 21(1979), 49 52. : A note on separable polynomials in skew polynomial rings of derivation type, Math. J. Okayama Univ., 22(1980), 59 -: On separable polynomials and Frobenius polynomials in skew polynomial rings, Math. J. Okayama Univ., 22(1980), 115 -129. [4] T. Nagahara: On separable polynomials over a commutative ring III, Math. J. Okayama Univ., 15(1972), 149 - 162. : On separable polynomials of degree 2 in skew polynomial rings, Math. J.
- Okayama Univ., 19(1976), 65 95. [6] : A note on separable polynomials in skew polynomial rings of automorphism type, Math. J. Okayama Univ., 22(1980), 73 - 76.