AZUMAYA ALGEBRAS AND SKEW POLYNOMIAL RINGS

Shuichi IKEHATA

Department of Mathematics, Okayama University

This note is an abstract of the author's paper
[1] and includes some improvements of the results in
it.

Throughout this note, every ring has identity 1, its subring contains 1, and every module over a ring is unital. A ring homomorphism means such one sending 1 to 1. In what follows, B will represent a ring, ρ an automorphism of B, D a ρ -derivation of B (i.e. an additive endomorphism of B such that D(ab) = D(a) ρ (b) + aD(b) for all a, b \in B). Let R = B[X; ρ ,D] be the skew polynomial ring in which the multiplication is given by aX = X ρ (a) + D(a) (a \in B). By R(0), we denote the set of all monic polynomials in R with gR = Rg.

A ring extension B/A is called to be separable if the B-B-homomorphism of B \otimes _AB onto B defined by a \otimes b \rightarrow ab splits, and B/A is called to be H-separable if B \otimes _AB is B-B-isomorphic to a direct summand of a finite direct sum of copies of B. As

is well known, an H-separable extension is separable. A polynomial g in $R_{(0)}$ is called to be separable (resp. H-separable) if R/gR is a separable (resp. H-separable) extension of B. Moreover, a ring extension B/A is called to be G-Galois if there exists a finite group G of automorphisms of B such that $A = B^G$ (the fixed ring of G in B) and $\sum_i x_i \sigma(y_i) = \delta_{1,\sigma}$ ($\sigma \in G$) for some finite $x_i, y_i \in B$.

We shall use the following conventions:

U(B) = the set of all invertible elements in B.

 u_{ℓ} (resp. u_{r}) = the left (resp. right) multiplication effected by u_{ℓ} B, u_{ℓ} = { u_{ℓ} | u_{ℓ} B}.

$$B^{\rho} = \{a \in B \mid \rho(a) = a\}, \quad B^{D} = \{a \in B \mid D(a) = 0\}.$$

1. H-separable polynomials. In our study, H-separable polynomials in skew polynomial rings play important rôles. Therefore, this section is devoted to giving some results concerning H-separable polynomials. Throughput, let $f = X^m + X^{m-1}a_{m-1} + \ldots + Xa_1 + a_0$ be in B[X; ρ ,D] and $m \geq 2$. First, we state the following which is easily obtained from the result of Miyashita [2, Theorem 1.9].

Theorem 1.1. Let f be in $R_{(0)}$, and I = fR. If f is an H-separable polynomial in R, then there exist $y_i, z_i \in R$ with deg $y_i < m$ and deg $z_i < m$ such that $ay_i = y_i a$, $\rho^{m-1}(a) z_i = z_i a$ $(a \in B)$ and

 $\sum_{i} y_{i} x^{m-1} z_{i} \equiv 1 \pmod{I}$, $\sum_{i} y_{i} x^{k} z_{i} \equiv 0 \pmod{I}$ (0 $\leq k \leq$ m-2), and conversely.

By virture of Theorem 1.1, we have the following

Proposition 1.2. Let f be in $R_{(0)} = B[X;\rho]_{(0)}$. If f is H-separable in R, then $a_0 \in U(B)$, $\rho(a_0) = a_0$, $\rho^m = (a_0^{-1})_{\mathcal{I}}(a_0)_{\mathbf{r}}$, and $f = X^m + a_0$. Moreover, $\{g \in R \mid g \text{ is H-separable}\} = \{X^m + b_0 \mid b_0 \in U(Z \cap B^0) a_0\}$, where Z is the center of B.

Proposition 1.3. Let f be in $R_{(0)} = B[X;D]_{(0)}$. If f is H-separable in R, then B is of prime characteristic p, and f is a p-polynomial of the form $\sum_{j=0}^{e} x^{p^j} b_{j+1} + b_0$ (p^e = m). Moreover, {g \in R | g is H-separable} = { $\sum_{j=0}^{e} x^{p^j} b_{j+1} + \beta \mid \beta - b_0 \in \mathbb{Z} \cap \mathbb{B}^D$ }.

2. Azumaya algebras induced by B[X; ρ]. Throughout this section, B will mean a commutative ring, ρ an automorphism of B, G the cyclic group generated by ρ , $A = B^G = B$, and $R = B[X; \rho]$.

Theorem 2.1. Let $f = X^m + X^{m-1}a_{m-1} + \ldots + Xa_1 + a_0$ be in $R_{(0)}$, and S = R/fR. Then, f is H-separable in R if and only if S is an Azumaya A-algebra. When this is the case, there holds that B/A is G-Galois, the order of G is m, $f = X^m + a_0$, and $a_0 \in U(A)$.

Theorem 2.2. The following conditions are equivalent:

- (a) B/A is a G-Galois extension with G of order m.
- (b) $R_{(0)}$ contains an H-separable polynomial of degree m.
- (c) $R_{(0)}$ contains a polynomial f of degree m such that R/fR is an Azumaya A-algebra.
- (d) $\{g \in R \mid g \text{ is } H\text{-separable}\} = \{x^m + a \mid a \in U(A)\}.$

When this is the case, for every $a \in U(A)$, B is a maximal commutative A-subalgebra of $R/(X^m + a)R$, $(R/(X^m + a)R) \otimes_A B \cong B \otimes_A (R/(X^m + a)) \cong_M M_m(B)$, and moreover, if $m \in U(A)$ then $A[X]/(X^m + a)A[X]$ is a separable splitting ring for $R/(X^m + a)R$.

Theorem 2.3. Assume that R contains an H-separable polynomial of degree $m \ge 2$. For $f \in R_{(0)}$, the following conditions are equivalent:

- (a) f is separable in R.
- (b) $f = g(X^m)$ or $Xg(X^m)$ for some g(t) in $A[t]_{(0)}$ such that g(t) is separable in A[t] and the constant term of g(t) is in U(A).
 - (c) R/fR is a separable A-algebra.

3. Azumaya algebras induced by B[X;D]. Throughout this section, B will mean a commutative ring, D a derivation of B, $A = B^D$ and R = B[X;D].

Theorem 3.1. Let $f \in R_{(0)}$, deg f = m, and S = R/fR. Then the following conditions are equivalent:

- (a) f is H-separable in R.
- (b) S is an Azumaya A-algebra.
- (c) There exist y_i , $z_i \in B$ such that $\sum_i D^{m-1}(y_i) z_i = 1 \quad \text{and} \quad \sum_i D^k(y_i) z_i = 0 \quad (0 \le k \le m-2).$

Theorem 3.2. The followings are equivalent:

- (a) $_A$ B is a finitely generated projective module of rank m and $\text{Hom}(_A^{}\text{B},_A^{}\text{B}) = \text{B[D]}$ (the subring generated by B_7 and D).
- (b) R contains an H-separable polynomial f of degree m.
- (c) $R_{(0)}$ contains a polynomial f of degree m such that R/fR is an Azumaya A-algebra.
- (d) $R_{(0)}$ contains a polynomial f of degree m, and there exist y_i , $z_i \in B$ such that $\sum_i D^{m-1}(y_i) z_i = 1$ and $\sum_i D^k(y_i) z_i = 0$ ($0 \le k \le m-2$).

When this is the case, for any H-separable polynomial f, there holds the following:

(1) R = B[X;D] is an Azumaya A[f]-algebra such that B[f] is a maximal commutative A[f]-sub-

- algebra of R with $B[f] \bigotimes_{A[f]} R \stackrel{\circ}{=} R \bigotimes_{A[f]} B[f] \stackrel{\circ}{=} M_m(B[f])$.
- (2) B is a maximal commutative A-subalgebra of R/fR with B Θ_A (R/fR) \cong (R/fR) Θ_A B \cong M $_m$ (B).

Theorem 3.3. Assume that R contains an H-separable polynomial f. Let $\Psi: A[t] \to R$ be defined by $\Psi(g_0(t)) = g_0(f)$.

- (a) Ψ induces a one-to-one correspondence between A[t](0) and R(0).
- (b) For $g_0 \in A[t]_{(0)}$, g_0 is separable in A[t] if and only if $R/\Psi(g_0)R$ is a separable A-algebra, and moreover, $\Psi(g_0)$ is H-separable in R if and only if deg $g_0 = 1$.

References

- [1] S. Ikehata: Azumaya algebras and skew polynoimal rings, Math. J. Okayama Univ., 23(1981), 19 32.
- [2] Y. Miyashita: On a skew polynomial ring, J. Math. Soc. Japan 31(1979), 317 -330.