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“-On splitting modules for group extensions

Tadao Obayashi
Shinshu UniVersity

Introduction.

Let‘ﬁn(G,A) be the n-th cohomology gfdup of a group G in a G-
module A. A G—module’B containing A is éaid to be avsplittiﬁgr
module for « & Hn(G,A), if for the inclusion map i;A—>B we have
# ® ) = 0, where i* ; H™(G,A)—>H (G,B) is the homomorphism of
cohomology groups induced from i. 4

It is known that for each n and o & Hn(G,A) there exists a
splitting modulé. For an application, we are particularly intere-
sted in a splitting module for « & HZ(G,A); A wellknown construct-
ion of such a module is as follows ( see, E.Weiss: Cohomology ‘of *
Groups, Acad.Press, 1969 ).

Let aX,Y be a normalized 2-cocycle which represents oK . As the
additive group of B we take the direct sum of A and a free abelian
group whose basis consists of symbols'bX ,» one for each element x
of G except the identity. For notational convenience we define b;
to be the zero element of B. We extend the operation of G from A
to B in just such a way that the 2-cocycle ax’y becomes the co-
boundary of the 1l-cochain by, .. This is done by defining .

' xby = bxy -bx + ax,y for x,y Ea)G. )

In this note, we shall show that a splitting module for &£ &H (G,A)
can be also constructed from the group ring Z[U] of a group exten-
sion U corresponding to o . Moreover if G-is a finite group, we
shall prove several propositions on properties of this splitting
module. Our proofs of these propositions seem to be more simpler than

the proofs using the splitting module formally constructed in above.
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1. An alternative construction of a splitting module.
Let U be a group. We denote by Z[U] the integral group ring of U
and by I(U) the augmentation ideal of U. Given a cohomology class

2
K €H (G,A), we take a group extension

1 > A > U >G —> 1
corresponding to. & , where the G-module A is viewed as a multip-

licative subgroup of U. Consider the exact sequence

0 —>I(U) —z[U] >7 —> 0
of A-modules. Taking homology, we get an exact sequence

0 ——>Hy(A,2) — H) (A, (V) —>>H, (A,Z[U]),

where Hy(A,2) £ I(A)/1(A)% = 4, H (A, T(0)) ¥ T(0)/T1(A)I (V) and
Hy (A,2[U]) ¥ Z[U]/I(A)Z[U]

R

Z[G]. We identify these isomorphic
groups, respectively. Then j is the restriction to I(U)/I(A)I(U)
of the ring epimorphism Z[U]/I(A)I(U)-——>Z[G] induced from the
canonical epimorphism U— G of groups. Moreover, under the ident-
ification between H,(A,Z) and A, i is a monomorphism of the

multiplicative group A to'the additive group I(U)/I(A)I(U) defined

by i(a) = a-1 mod I(A)I(U), a € A.
Set B = I(U)/I(A)I(U).vThen we have an exact sequence
5 -
l— > A —>B —11(G) —>0 (1)

of abelian groups. By multiplication in Z[U], U operates on B.
Under this opefation,‘A acts trivially as follows
a(u-1) = (a-lj(u=1)~+ (u-1) (mod I(A)I(U)), for aeA, uel.
Hence B can be viewed as a left G-module, and it is clear that j
is a G—epimorphism.
Theorem. B is a splitting module for «
NS

Proof. Let U = xeG AuX (u; = 1) be a decomposition of cosets
of U with respect to A. Then the normalized 2-cocycle ax*& defined
b
bY"uxuy ;=ak;yuiy ( ak’y:e; A" ) belongs to: the given' cohomslogy
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class‘bq< . Furthermore the conjugation uxau;1 of a € A by ug
coincides with the original action xa on a by xe&G. Thus, for any
a € A and x € G we have that

ugauil - 1 mod I(A)I(U)

i}

i(xa)

u(a-1) (0,1 -1) + u (a-1) mod I(A)I(U)

[}

ux(a—l) mod I(A)I(U) = xi(a).
This shows that i preserves the operations of G. On the other hand,
for each x € G we define the element bX of B by setting bX =

u, - 1 mod I(A)I(U). Then , for any x,y € G it follows that

xby = uy(u -1) mod T(A)I(U) |
(ax’y'l)(uxy‘1)+(ax’y—1)+(uxy-l)-(uX-l) mod I(A)I(U)
y " Px > (2)

which shows that the 2-cocycle a

1l

[}

if ax’y ) + bx
X,y becomes in B the coboundary of
the 1l-cochain b, . This proves the theorem.

We see easily that our splitting module B is isomorphic to one
constructed formally in Introduction.

2. Main properties of the module B.

Proposition 1.B/i(A)is isomorphic to I(G) as G-modules.

Proof. This is a direct consequence of the exactness of the
sequence (1) of G-modules.

Proposition 2. B/I(G)B is isomorphic to U/[U,U] as abelian groups,
where [U,U] means the commutator of U.

Proof.By definition of the action on B of G, I(G)B = I(U)?/I(A)I(U),
Then we have the isomorphisms B/I(G)B I(U)/I(U)zg U/[U,U]j

In the following, we assume that G is finite.

Proposition 3. Let ce Z[G]. Then cB CiA)if and only if

C:'I'Z
xe ¢ *
for some integer r € Z.

Proof.In the group ring Z[G] of a finite group G, we can see easily
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* that cI(G) = 0 if and only if ¢ = r gng_x_ for some r&Z. Thus
the propdsition follows from,Proposition.l,
Let t ; B—B be the trace map, that is t(b) = EEEbe . Since
X & ‘

t(I(G)B) = 0 , t induces a homomorphism t ; B/I(G)B—>B..

Proposition 4. The following diagram commutes

a4

/U, Ul % B/I(G)B
Jvoon ]
A -—-—1————> B

where VU A ;s the transfer map of groups.

Proof. In féct, from Prop051t1on 3 the image of t is contalned
tin i(A),‘By definlthn of the transfer, U_?A(auy[U,U]) =

T (xa) E ax;y , and so iOVU_eA(agy[‘U,U])v‘ - Soxi(a) +Z; i(a,
On the other hand, ;he isgmorphism U/[U,U] —B/I(G)B sends the
‘element aﬁny,U] to au, ¢>1 + I(G)B which equals to the element

~i(a) + b and from the equality of (2), it follows that

y *
£(i(a)+by) Zm(a) +§,i(a

is commutatlve

X y)«'This shows that the above diagram

Remark These propertles of the spllttlng module B are usefull
in the group theorltlcal proof of the principal ideal theorem in

class field theory (see E.Welss, ibid.).



