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Random Walks and Some Problems concerning Lorentz Gas

Ya. G. Sinai (Landau Institute)

§1. Random Walks with Random‘Transition frobabilities

Random. walks with random transition probabilities arise
in many problems of probability theory and mathematical phys-
ics. In particular the porresponding problems have many common
features with problems related to the Schrddinger equation with
random potentials. The one—dimensionai random walks with ran-
dom probabilities were studied intensively in a series of
papers by H. Kesten, M. Kozlow, F. Spitzer and others (see, for
example, [1], [2] and [31]). |

Let us recall some definitions. Wevconsider the random
walk on the usual cubic d-dimensional lattice Zd. The unit
vectors directed‘along positive coordinaté semi-axes are denoted
‘by ey o=1,+».,d. The transition probabilities fqr the con-

sidered random walk have the form

5%— + Ex,u’ for x'=x + .’ a=l,*++,d,
)1 : ' = =1 . e
Pxx' =<53~ = &g g0  TOr x'=x - e , asl,cceud,
0, otherwise.

Here Ex o  are identically distributed symmetric independent
3

~

random variables with lgx onl < €y <1 -1/2d. We shall denote
3
all probabilities and expectations related to the random vari-

ables EX o by Pg and EE respectively and by X(n) the position



7

of the moving point at the moment of time equal to n. From the

2k+1

symmetry of distribution it follows that E Ex = 0 for all
3

£
k > 0. We shall call the random walks with such transition
probabilities as random walks with random transition probabili-
ties. In the papers [1] - [3], the authors used the term "ran-
dom walks in random environments." Certainly one can easily
imagine natural generalizations of the introduced concept. The
results of the papers [1] - [3] concerhed the -one-dimensional
case and mainly the properties of recurrence of the random walks.
In our paper [4] the limit behaviour of the random walk was

considered in the one-~dimensional case. Assume that o>0 and 6>0

are given. Then the main result of [4] is the following theorem.

Theorem. For all sufficiently large n, one can find a subset
Cn in the space of all possible realizations & = {EX a} and a
: L0
functional vm(n)(i) defined on Cn such that
1) PE(Cn) > 1 - o3
2) if € € C, then P(|x(n)/4n®n - m(n)| <8§)+1 as n'f w

uniformly in £ e Cn, here. P means the probability distribution

in the space of random trajectories X(n) as .all . o €C

2 n-

are chosen;

3) the functional m™)(£) has a 1imit distribution as n- .

This theorem shows that the properties of one-dimensional
random walks with random probabilities differ significantly from .
the properties of the usual random walks. In particular x(n)
takes values of order 2n’n for‘large n.' Moreover x(n5/£ﬁ2n
turné ouf to be ioééiized.‘ Appéfenﬁly this propertybis Sf the

same nature as the property of the one-dimensional Schrddinger equa-
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tion with random potential to have pure-point spectrum with
probability 1 (see [5]).

Concerning the multi-dimensional case, we shall mention a
result by D. Szasz et al. [6] concerning the local perturbations
of the usual random walks. Namely they considered the case when
gx,a are equal to zero everywhere except a finifte set. For
this case they have shown under some natural assumptions that

x(n)/vn has in the 1limit n »> « Gaussian probability distribu-

tion.

§2. Random Walks with Inner Degrees of Freedom

We shall describe in this section another generalization
of random walks. Assume that a finite or countable set I is
given. We shall call I the space of inner states of the moving
point. Suppose now that the moving point is at any moment of
time in a point x e Zid and in a state i € I. Thus the state
of moving point X(n) is a pair X(n) = (x(n), i(n)). We shall
consider homogeneous random walks which are defined by the set

o = 1’...’d

of transition probabilities Py(i,j) where y = te s

and i,j € I. Namely Py(i,j) is the conditional probability for

v

the transition (x(n),i) » (x(n) + y, j). Therefore Py(i,j) 0,

%ij(i,j) = 1. We shall call the random walks defined by the set
HPy(i,j)H as homogeneous random walks with inner degrees of freedom.

The random walk is called symmetric if Py(i,j) = P_y(j,i).

Definition 1. A measure A on the space I is called a

stationary measure for the random walk if the measure np, on the

space zd x T or pairs (x,1) defined by the formula uo(x,i)=Xi
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is the stationary measure for the considered random walk with

inner degrees of freedom, i.e. lj = i?y AiPy(l,J), jelI.

In the case of symmetric random walks, we can rewrite the

last equation in the following form

LoOAP (1,3) =) P__(J,i)A, = A,.
i,y Y i,y Y ol

Let a(J,1) = % P (j,1). Then we have I q(j,1)A; = A;. The
i -

y J
matrix Q = ||q(J,1)|]| is a stochastic matrix and we can put
Aj = 1/#(1). Under some natural conditions, this vector is unique.

The theory of symmetric random walks with inner degrees of
freedom can be sufficiently far developed. For example, we

shall prove the following theorem.

Theorem. Let a symmetric random walk with inner degrees of
freedom be given.u Assume that I is finite and fer some m > O |
the matrix Qm has strictly positive matrix elements. Then for
d = 1,2 the symmetric random walk is recurrent while for 4 > 3

it is transient.

Proof. We shall give only an outline of the proof. Let
us denote #(I) = m and consider the. space L%(Z‘i) of vector-
valued function ¢ = {¢(x), x e 7 %} whose values are vectors

of €™ with the usual norm. We introduce an operator A

(A)(x) = ] P_o(x').
xtixt+y=x J
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In the case of symmetric random walks this operator is self-
adjoint. After Fourler-transform, it becomes an opérator—valued

£ ; a . d
unction ‘A(}) actlnguon the space LI(Tor”) of square~integrable

£ 1 (
unctions = (1), A e Tord), @(A)~€'mm, l.e,

(A8)(A) = A(A)B(R).

R(A) for every X & Tord is a self-adjoint operator, HK(A)!|< 1
everywhere except A = 0, At the point A = 0 the operator has
an eigen-value 1, while all other eigehvalues have absolute
values less than 1. Let us denote the corresponding eigen-vector
by e(d), t.e. A(Ne(r) = a(r)e(r), a(0) = 1. It is correctly
defined in a sufficiently small neighbourhood of A = 0.

Now we introduce the conditional probabilities qé?;(i,j)
which are the probabilities of random trajectories which start
at (x,1) and after n steps come to the state (z,j). We have the

system of recurrent equations

(n+l) _ (n)
Qx,z =1 Pny+y,z

; (1,301l This matrix depends

(n) . e (n
where Qx,z is the matrix {hx,
only on the difference z - x. The probabilities q;n;(i,j)

>
can be written after Fourier transform in the form

G (L) =[5 700800, s;00an,

Tor
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where 6i(k) and Gj(K) are sultable »mm—valued functions on

Tor®. We can rewrite it as follows:

a{?)(1,9) = Ja") a§om5§ozm“ =) (19).

Here 5§0)(A) and 5;0)(A) aréiprojections Qf 5i(x) and Sj(x)
onto the subspace generated by e(A) and the intégration goes
over the neighbourhood of A = O; where e()) 1is correctly
defined, ré?i(i,j) is a remainder term. It is easy to‘see“that
r;?;(i,j) decays exponentially fast while the first term has
thé same asymptotic behaviours as the transition probability
after n steps in the case of the usual random walk. After‘
this the arguments ~concerning the récurrence propertiesvcgnipe

carried Qut and we get the desired result.

§3, Lorentz Gas and Bandom Walks with Inner Degrees of Freedom,

Let 8 = {si} be a countablé subset of TR® such that
‘|si—sj||> 2p for some 0> 0, 1 # j. We dénoté by Dy (sy)

the disk of the radius centéred at Si

These disks are called scatterersand D 1is a configuration

’ = U D
and D = T Dp(si),

of scatterers. Lorentz Gas 1s the dynamical systém generated

by the motion of a single particle between thé disks with cons-
tant velocity and with elastic reflections from the boundaries
aDp(si) of disks DQ(Si)' ‘Lorentz ‘proposed this model more thanh
seventy‘years ago for the description of the motidn‘bf electrons
in metals. Hé assumed that the scatterers aré heavy ilons which

suppose to be unmoving whilile electrons are light particles and

6
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we can neglect thelr inner interaction. Since that time the
Lorentz Gas is one of popular models of non-equilibrium statis-
tical mechanics.

We shall assume that the velocity of the particle is equal
to 1. Let Ci be the set of unit vectors beginning at a point
of BDp(si) and directed outside the boundary. Topologically
Ci is a cylinder and we can introduce natural coordinates (r,% )
on it, where —r 1s the cyclic coordinate along the boundary
aDp(si), 0gr<2m , and ¢ is the angle between the vector
beginning at the point with the coordinate r and the unit
normal vector n(r) beginning at r and directed outside
aDp'(si),— m/2 ¢ £ m/2 . Ve consider the set c =Y c, and
the measure u on C whose restriction to Ci has the form
du = cos¢drd ¢ . It is obvious that C 1is the measure space
with the o-finite measure u.

Suppose that for xe;Ci the straight segment which begins
at x intersegts a scatterer QD(SJ). We can construct y’éCj
assuming that we havé a part of a trajectory of the Lorentz
gas between two subsequent reflections (see Figure 1). In
what follows we shall

X

o> I %

Figure 1.

consider only such S for which for p—almost all x one can find

the corresponding y. Then we'gét a transofrmation T of the
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measure space (C,u) where Tx = y. It is an analogy of the usual
Liouvilie theorem that T preserves the méasure U . On the
space C one can introduce the natural involution o which
transforms x = (r,¢) into oax = (r,-$) (see Figure 1).

Suppose now that D 1is a periodic configuration of scat-
terers. It means that one can find a discrete subgroup T of

translations of the plane and a parallelogram HO such that

if T = vyl then (I i = T2
y - "o v," Yz> BHer}anYz ? #{PHY B

Periodicity of D means that Hyr\D = Y(HOr\D). We shall assume
also that D 1is such that the length of the segment connecting
x and. y is uniformly bounded.

Suppose.that we have a finite or countable partition> 13

of the set € which is alsc TI-periodic, i.e. 1f A, is an

g

element of & then YA is also an element of §&. The partition

:

§ 1is called symmetric if each Ag is contained in a Ci and

uAE is also an element of the partition £&. We denote

= UFC1 ' = e
Cy 1is,eT, and &, = £|C; . Let theelementsof g, be
(A, Bysee+y A ,e++) and I be the set.of indices (1,2, ,n,++).
We shall say that the point X €Cy is in the state (y,j) if
s, ¢l and x A,
k€ Ty <Y
For every semi-trajectory x4, Tx,,-*-, meo,..., we

can construct the sequence of pairs (Yo,jo), (Yl’jl)""? (ym,jm),---,

in such a way that T'x is in the state (ym,jm).

0
I can be considered as the usual lattice of points (p,q)

where p and q are integers. We introduce the norm

lyll = |m| + |n|. One can choose I so large thatllym— < 1.

Yoo |
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Thus we can consider the sequence of points
(YO’jO)’(Yl’jl)"'.’(Ym’jm)"*" as aytrajectbry of the random
walk with inner degrges of freedom, The,measufé ﬁ inducés a
natural measure on the space of all trajectories which is trans-
lation-invariant.

It is a natural problem to choose & 1n sﬁch a way that
the induced measure‘could be sufficlently wéll approximated by
Markov measures. | '

The constrﬁction of such & 1s based upon the notion of
a Markov partition. TFirstly we recall the notion of a paralle-
logram. Let x€C. A smooth curve vy 1is called local stable
(unstable) manifold of the point xevy 1if i is continuous
on y for allnz 0 (ng0 ) and diam (T'y)+0 as n+e (n§ ~®),
It is known that for"ﬁ-almost all x ‘local stablé (unstablé)
manifolds exist (see e.g. [7]). 1In what follows we shall méan
under Y(s)(x) and Y(u)(x) the maximal local stable and unstable
manifolds respectively. . v

A subset PCZCi is called a parallelogram if for evéry
X, y€P the intersection y(s)(x)F\y(u)(y) P (see [8]).
Each parallelogram P  has naturai partitions E%S) and Eéu)
whose elements are of.the.form y(s)(x)f\P ;and y(u)(j)f\P

respectively for xeP. We shall denote by->Cé(s)(x) (Cz(u)(xl)
, P P

the intersection Y(S)(x)fYP (Y(9>(x)fiP réspédtivély).

Definition 2. A partition £ of the measure space (C,u) is

called a Markov partition if its elements are'pafalieldgrams

, _ . -1
_Pl, P2,---, and for almost every X& PiC C, TxE€ Pj , T xé-Pk,
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we has -the inclusions

-1
TCE(S) (x)c CE(S)(TX), T C (ufx)ti C (u)(T x).
P. P

i J 1 k

In the paper [9] L.A.Bunimovich and I have constructed a
periodic Markov partition for a periodic configuration of
scatterers, symmetric under the involution o

Using the Markov patitions we Qonstructed'natural Markov
approximations for the measuré u . Some conseQuences follow
from the properties of these approximations. We shall mention
one of them (see [10] for this and other results).

Let aq(t), 0<t < » be a trajectory of Lorentz gas on
the configuration space :mg\\D. We suppose that”fhé initial
point x(0) = (q(0), v(0)) is random and ié distributed
according to a probabllity distribution with smodthvdensity.
For every T>0 we consider continuous functions [0,1]+IR2'
defined by the formula |

ap(s) = ﬁq(sT), 0

lIA

s$1,
The probability distribution for x(0) ihducés the probability
measure PT»‘on'the sbacevof functions qT(s):

Theorem. PT converges weakly to the Wiener méasﬁre as T + o,

Markov partitions give the possibility.té reduce problems

related to Lorentz gas to problems éoncerning random-walks.

10
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The construction of Markov partitions can be carried out in many
cases. Let us glve some examples.

(0)

is a periodic configuration of

(0)

1. Suppose that D
scatterers. We shali mean under local perturbation of D
any configuration D which differs form D(O) by a position
of a finite set of scatterefs. Markov partition in this case
ié'alsola local pertubation of Markov partitions for periodic

(0)

configurations D and the problems can be formuléted in terms
of random walks with inner degrees of freedom with local pertur-
bation of transition probabilitieé. We comé to a problem of a
’generalization of results by D. Szasz ([6]) mentioned above
té‘the case corresponding to the Lorentz gas. Some results in
this problem are already proven but the gehérai problem still
remains open. | |

(0)

2. Suppose again that D is a péfiodic configuration

of the scatterers and let us shift each scatterer independently

from the other scatterers. Ih this way we get a purely random

configuration of scatterers D. Markov partitions can be con-

structed in thisvcase too. Becéuse D is random, Markov par-

titions are also random and‘we come to a genéralizaﬁion of

random walks with inner degrees of freedom with random transition

probabilities. . |
Probably many dynamical systems with largé number degrees

of freedom can be represented as random walks with random

ftransition probabilities.

11
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