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Random Schrddinger operators

Shin-ichi Kotani ( Kyoto University)

Recently considerable attention has been paid to the study of
spectral properties of Schrgdinger operators with random potentials.
Physically this randomization of potentials is considered to describe
approximately the motion of quantuﬁ mechanical particles in random
media. Rigorous results on this field have been accumulated recently
s therefore, in this report, the author gives a little survey.

The content of this note consists of three sections. fvl is devoted
to the description of general properties of random ergodic Schrddinger
operators. In §_2 the author gives results on asymptotic properties
of density of states for this random system. In 5.3 spectral properties

of one-dimensional systems are discussed.

§ 1. General properties of random Schrgdinger operators.

In this section general results on random Schrc')'dinger operators
are given briefly. These general characters were first pointed out-
by Pastur L.A. [/§].

Let (1,7, P) be a probability space with a gfoup of P-preserving
transformations {Tx yXE Rn} . We assume that {TX} is ergodic*.
Let U(x,w) be a real valued measurable function on Rnxﬂ_ such
that U(x, T}l;f) = U(xty,w) for every x,yéRn and w €f) .Then under
sui_table condition on U(x,w) a system of self-adjoint operators

A(w), which are called random Schrodinger operators, can be defined by

* If F €F satisfies P(TXFG F) =0 for every x ,é Rn, then P(F)
=0or 1.
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Aw) = -4 + U(.w

in Lz(Rn), where 4 denotes the Laplacian in RY. A remarkable

fact of this system of operators is
ATw) = 75 AW T
x X % i

where Z% f(y) = £(y-x) for f£ é‘LZ(Rn). Therefore for each
fixed wel)l , the spectral structure of the operators ~{A(T;u), X é-Rn}
coincides each other. This together with the ergodicity of {TX} - gives

Theorem 1. (Pastur L.A. [/¢1, /1) For simplicity assume that U(x,&)
are uniformly bounded. Let {E)(w)} be the resolution of identity

of A(). Then

(1) for each fixed interval I in Rl, EIOW) reduces to zero almost
surely or EI@vj has infinite dimension almost surely. The same thing
can be said also to each component of the Lebesgue decomposition for
{E)Oﬁ} . |

(2) Let EI(x,xua be the continuous kernel of the projection EI(aﬁ.

Then the statement of (1) can be realized according to
M( E;(0,0,#)) = 0 or  M(E (0,0,4)) >0,

where M denotes the integration with respeét to wr by P(dw).

Thevonly problem in proving the above theorem is to show fhat every
quantity arising in the statement of the theorem is measurable with
respect to U(+,w). (for the detail of the proof seé [3])

It should be remarked that in the formulation of random Schrgdinger
operators the cases of periodic potentials, quasi-periodic potentials

and even almost periodic potentials are included.

§ 2. Order of singularity of density of states at their edges.

Let V be a smooth bounded domain in Rp. Consider the Dirichlet
problem in V for -4 + U ). Let {)\;,,(ar) } " be the set of the

eigenvalues and denote the distribution of the eigenvalues by
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1 :
1 v
Lo = H{3 A< Al
where |V | denotes the volume of the domain V.  Then we have

Theorem 2. (Pastur L.A.[/4]) For simplicity assume that U(x,w)

are uniformly bounded. Then with probability one
NV(A,ua —_— N(X) as V goes to R regularly

on each continuous point A of N(A) and N()) is a non-random

function. Moreover we have an identity N()\) = M(EA(O,O,W7).

The proof can be doné without difficulty by using the Feynman-
Kac formula.(see for example[3]) ,

The derivative of this non-decreasing function N()) 1is called
a density of states of A(W), which plays an important role in ‘
~statistical mechanics for A(@w). Lifshitz I.M.[7] gave a conjecture
on asymptotic nature of N()) at its left edge. This was proved
rigorously by Nakao %Luﬂ for a certain random potential by applying
a large deviation theory of Wiener sausage established by Donsker M.D.
and Varadhan S.R.S, [2]. Afterwards this result was reconsidered in

another potentials by two people.  The potentials they considered are

O R I I AT I
R

where TJr(dx,w) - is a Poisson random measure* with characteristic

measure dx and y’(x) is a non-negative measurable function.

Theorem 3.

o) PG = o 1x17™2) a5 1 —> 0, then
n/2 : . n/2 .
A log NQ) —> - Yl - as ) ¥ 0,

where Yi is the first eigenvalue of -A with thé Dirichlet

boundary condition on the pall with unit volume in K. (Nakao S.([12])

* random measure taking independent value at each disjoint set and

with Poisson distribution of mean dx.
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(2) \S""(x) ~ K gxi T 9 —5s with K>0, then

n/2 nn/2, %1 (at2)/2 .

M “log N(X) - C‘% ( ey as AV 0,
where Cl = inf {I(f) +§(f)} , I(f) = gnlvfﬂzdx,

- £€F, T - R
—_ ” i £ d
¢ (5 = 3Rn{l_ EXP(_KJRn —-“—(E)-%+2 )} dy al_lq .FO = {f‘z‘o’
. | x-yl
y nf(x)dx =. 1 and I(f)<>°0}. ( Okura H.[31)
R .
(3) {f(x) ~ K x| - (n+6) (0<P<2, K> 0) as }x|—> 0, then
/\n/alog‘N(/'\) — rg o0 ———'———}ﬁ @R a5 v o0,

whgﬁe‘ .CZ, = nkn+§f’( —y )fl fz is the volume of the unit
ball in = R". (Pastur L.A.[/8)

It is iﬁterésting to 'compeltre the above result with deterministic -
cases. '
(4) _U(x,w) is non-negative, not identically zero and periodic,
that is, -,U(X,(Qr) - U(x+w) for some periodic function ﬂ(k) and
w € fL = R%/z" . Then there exists some )“O> 0 such that

NQ) = O for any )\§,>\0 .

Summing up these four examples we have a graph |

(2}
>)

oo
ZAN

L N\

o

This tells us that the stronger the mixing property of  U(x,w) 1is,

the more dense the states would be.
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If the space dimension n = 1, we have a more precise asymptotic

formula. Let
A(w) = - —3 + T (e ,w) .
This corresponds to the A(w) with _7(x) = Qa(x). Then we have

Theorem 4. (Kotani S.[7])

Ny ~ =L TR as 240,
Te
where c = £(0) and £(x) 4is a unique solution of
" _ l1-e * '
f (x) = - f(x)
. C1/4 X 1-e Y }
f(x) ~ - exp{—go —————-—}7; dyt (=—> 00).

On the other hand, at the right end point <+ the following theorem

is valid.

Theorem 5. (Nakao S.[/2]) Let U(x,w) be a general bounded

stationary ergodic random field. Then

1 A

_ n/2
N = 7 (14n/2) (47r )

+ o( )

Therefore at high energy levels at least the mean of spectral

resolutions behaves as if there had existed no randemmness.

§ 3. © One-dimensional random Schrgdinger operators.

If the space dimension n=1, we can get more precise knowledge on
spectral properties. Before stating the results, we explain a well-
known eigenfunctions expansion tﬁeorem for one-dimensional second
order’différentialﬁoperators. Let- q(x) 'be a real valued continuous
function and for each )N ¢ C let { 9;(x), H&(x)} be a linealy

independent system of solutions :

(]
[

1 $00)

]
o

SR@ 4 A B = 2 f @, B

0 K0 =

|
[

SR @K@ = Ak @, O

~§ -
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and define

R,(0) = lim He)

O = - 1im %K= = & (%) '
B o e x o 4w &

Then these two funé¢tions are holomorphic in C\R with positive imaginary

on the upper half plane. Another similar functions are defined by

o Rl())Rz()b) 1
m = , m,(Q) = - ,
11 Rl(A) + Rz(x) | 22 R1(") + Rz(,\)
and Rl())

m, ) = my () = .

R (M) + R, O

These four functions define four Radon measures:

C,. (1) = lim L

Moy = gI Im mij(A+i€)dA.

This system of measures satisfies

01,(M = 9, @

< & (1
o7, @ °~21(I)‘=61_1(I) 22D -

Using these four measures we can define the kernel of the resolution

of identity for the self-adjoint operator -A + q(:) by

B Ge,3) = ) 500 B 95, @ + S Yao b T @

4 B@ B T @+ [ A Tyan
Therefore spectral properties of our operator are governed: by a -measure:
0“7(1) = o0,@Dm + 0'22(1) .

Now we choose a special random potential. Let M be a smooth compact
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Riemannian manifold, A be the Laplacian and dx be the normaliééa‘

volume element. Let F beé a smooth real valued function on M satisfying

For-any 'x &M there exists a multi-index k such that.
k
D Fx % 0.
: ) t/2A
Since dx is. a unique invariant measure of the semlgroup e’ s we
can define a statlonary dlffu51on process {X (W, x &R } with generator

1/24A  and initial distribution dx.

Theorem 6. (Goldseid I.Ya, Molchanov S.A; and Pastur L.A.[Sﬂ) If a
random potential U(x,w) deflned by F(X W), then with probablllty one
the Schrfdinger operator A(aﬁ has a purely discontinuous spectrum

densely in xﬁgﬁ F(x?,bo ).

Theorem 7. (Molchanov S.A.[//]) With the same potential as Theorem 6
with probability one each of eigenfunctions of the operator A(s)

decreases exponentially.

The proofs can be done by using the explic1t formula of spectral
measures as stated in the beglning of this section. In the proofs an

essentlal role is played by the exponential growth property of

9;(x) + y}(x) . In this connection we glve a theorem
Theorem 8. Let U(x ®) be a general statlonary ergodlc process.,

Assume that 9;(x) + 7;(x) grows exponentlally as jx)—%malmost
surely for each ) ¢R.  Then with probability one A(w?.»has no

absolutely continuous spectrum.

Proof. Since under the assumption of the theorem the absence
of absolutely continuous spectrum-of A(w) - on the.half line [0,x)

or (-6,0] with the Neuman condition at the Boundary 0 can be

proved by the same method as [§], [/s], we have only to show the following
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Lemma. ‘' If the measures corresponding to Ri()o and RZ(A) have no

absolutely continuous part, then o

11 ~and 15} also have the same

2
property.

Proof. Note

{1+ |R, )| In & W) + {1+ |R, )] 2}Im R, ()
1 2 2 1

Im (m, () +m,, (M) = =
IR ) + R,

It is known that 1Im R()) tends to absolutely continuous part of the _

_measure corresponding to R(}) as ) approaches to the real line alﬁbét‘
everywhere with respect to the Lebesgue measure on R1 and bR(A) iéséif
has non-zero finite limit almost everywhere as‘) tends to Rl. Thé;éfofé

the assertion of the lemma can be proved immediately.

The ptoperty of exponential groﬁth of geheralized’eigehfunétibns{9;(x),
9;(x)/} was first proved by Matsuda H. and Ishii K. [/ iﬁ a discrete
systemvby applying the Furstenberg theorem on the exponential groﬁth
of the product of independent identically distributéa random speciai
linear matrices. The connection of the exponential growth and the
absence of absolutely continuous spectrum was first recognized by ;
Casher R.J. and Lebowitz J.L.[1] and proved rigorously by Ishii K. [&].
This property is also essential in proving Theorem 6 and 7.

In one-dimensional case, it is interesting to know how the increase
of randomness gives influence to the structure of the spectrum. Up to
noﬂ@recise spgctral structures are known in two cases. One. is the case
of periodic potentials and the other is the above mentioned Markov
random potentials. These two cases have quite differht features. The
problem is to determine bifurcation points of the spectral properties.

In this connection it is significant to study a case

UGew) = £Gerl) + Y E(E (65))
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where f is a smooth function on R/Z, wlé R/Z , the second term
is the potential of Theorem 6, W= (“i’u5> and - ) is a real constant.
It is easy to see that this U(x,w) 1is ergodic stationary process.

" Moreover we can prove the exponential growth of the generalized
eigenfunctions of A(w) with this potential almost surely: for all- A
e‘Rl. Hence applying Theorem 8, we can conclude that with probability
one A(w) has no absolutely continuous spectrum. In this potential,

it is interesting to note that for sufficiently small ) the spectrum
of A(W) has gaps if the spectrum of  A(«) with » = 0 has gaps.

So it is probable that there exists a critical comstant V,>0 such
that for all Vﬁ%[O,)g) the spectrum of A(w) has gaps and for all y €
(VC,RO there is no gap. Moreover since the exponential growth property
is valid also in this case, it is hopeful that there exists only purely
discrgte spectrum . However these problems remain open .

Am&% other things it is quite interesting to know the spectral
properties for random Schrbdinger operators in ﬁulti—dimenéional case.
In this symposium Professor Sinai informed that Molchanov S.A. proved
recently that the spectrum of a discrete system with a specially
identically distributed independent random potential in .QZ(Zn)

consists of only absolutely continuous part if n. 2 5.
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