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Statistical Properties of the forced Lorenz Chaos

— Synergetic Approach to the System Identification —

Yoji AIZAWA

Department of Physics, Kyoto University, Kyoto, Japan

synopsis

The forced Lorenz Systém is stqdied synergetically with'the
main regard to the statistical identificatioﬁ of the non-periodic
motion. The foilowihg points are reporfed; -

1. Phaée diagram of‘the entrainmént

2. Spectral denéity and timé;éorrelaéion fuﬁctiénj4”

3. Recurrence time distribution

4. Lyapounov spectrum

5. Theorétical reconstruction of the time correlationrfdhé—

tioﬁ | | |

6. Hausdorff dimension of thé symbolic time series

7. H&usdofffkidimension 6f.the strange attractor

8. infermiftency | | 7

9. Supplementary discussion
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§1. phase-diagram

The following. non-antonomous system is considered;

dx/dt = og(y-x)
dy/dt = rx-y-xz (1)
dz/dt = -bz+xy+AcosBt

where o, r, b, A and B are parameters. When the driving fofCe
Acos Bt is finite, the whole orbits are restricted to a finite
volume in phase space as t goes to infinity since the guadratic
Lyapounov function is easily found. The'symmetry of the system
is not diturbed by the external driving force; the system is
invariant to the space inversion (x>=-x, y>=-y ; A+ —A)_
The original Lorenz chaos is the case of o=10, r=28, b=8/3
and A=0 %) When A # 0 ,the periodic driving force whose period
=.%%f , induces the onset of the (partial) coherence through
nonlinear internal resonances, and the motion is entrained into
an ordered one, which has a higher symmetry than the original .
Lorenz chaos. The phase'diagram of the entrainment is shown in
Fig.l. The typical limit cycle motion in each regime is illus-
Fig.1l.
trated in Fig.2, those are classified by the alternation of the
Fig.2.
period nT as well as the asymmetry of each orbit. A variety 6f

bifurcations are observed in the neighborhood where the periodic
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motion takes the place of nonperiodic one.

§2. Spectral density S(f) and time correlation function R(t)

S(f) and.jR(t) are defined as follows,

NT i 2
S(f) = <ﬁ%l‘foy(t)e12“ftdt] N @)
g NT :
and R(t) =

1,0 ., EER
<.ﬁf0y(t )y (t+t')de >

where f stands for the{ﬁrequency.3)

In the regime for the periodic
response, only the line spectra is obtained, but for the non—-
periodic response S(f) has a continuous component. Figure 3 .
shows the change of the spectral type for each value of A, where .
B=6.0 is fixed. S(f) 1is shown in Logarithmic plot, and the
coordinates x, z and f is in arbiﬁrary unit. .

Increasing thellevel of the periodic,pe;turbatiqg}’the Qriginal‘
Lorenz. chaos isvpartiallyven;rained:tg‘the_modulated,inter§al_
mode, and as the result ,several dominat. peaks come to appeaf in
the spectral density function. The long time tail of the time
correlation function is closely connécted to the onset of the
partial coherence. Special attention must be payed to the low

frequency domain, where for the case of A=0 the spectral type

is well reproduced by,

s(f) ~ £9°5 S (4)
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§ 3. Recurrence time distribution 4)

Figure 4 shows the return map of the successive zero-crossing

Fig.4, Fig.5

recurrence time {T;} : x(Ti);=x(Td4;l)==0 - The time course of
x(t) (in Fig.5) suggests that the recurrence timé is measured by
the integral n; which stands for theﬂnﬁﬁber of the oscillation
during T, . The flip-flop jump occurs at the zero crossing
time. Therefore, the time course x(t) is represented by the
jump prOCeSQ-P(t)'With discrete Eimé iflthé’ébaiééQQréihiné
projectioh'isiappiiéd’dﬁring each Tecurrence time. In Sther
words, x(t) is sepafated into two parts, P(t) and 9(t) as shown

in Fig.5." Figure 6 shows the distribution density P(m) of the

' Fiq.6, Fiqg.7

recurrence time m and figire 7 is ‘the distribution denSity'P(h}N)
of the flip-flop number m during the time interval N. Both
plots in Figs 6 and 7 are adjustable by the exponential distri- =
bution and the PéasgéniénLaisfiiﬁutidnufeépeCtiVéiy, which are
shown Sy"fhe'Sblid lines; ' ’

P(m) = (l-m) m™ % -

N! (l_;)N—m o

P(m,N) = o m-m) 1

where m=0.44 is adopted in both cases. Flip-flop jump process

is realized by a (0,1j symbolic time series. Steady distributions

are equal for both symbols;
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. _ _ ’ ) 7
P, =P, = 1/2 | (7)

and the transition probability is given by,

= R (8)
PlO POl m .

The simple ‘markovian identification mentioned above leads us to
the CharacteriZationtdffthe'nonperiodic'fléw in terms of the
Kolmogorov - 'Sinai ‘entropy or the Hausdorff “dimension which is
explained in §5.

§4. Lyapounov spectrum 5)

The Lyapoun0v;speCtra'k{Ki},(ié=l;2,3) are calculated by,

1= K
f2 7% T Ry (9)
R =

3= K 7Kg

where Kyr Kgo and KL are the stretching rate for the strobosco-
pic mapping (f : (xt, Yyr zt)-+(xt+T, Yipq? zt+T)) of the
volume, surface, and line in the corresponding tangent space,
respectively. In the numerical célculation, these values are
obtained through averaging over the appropriate ensemble of the

initial condition. Figure 8 shows the Lyapounov spectrum for

Fig.8.
~each value of A. (B=6.0 1is fixed.) The estimation error in
the averaging cglculation is le;s than 0.02 for each KU . The
second Lyapounov spectruﬁx K ”is positive for 0<A <21 . Around

2

A=21 , however, no considerable singularities have been observed
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so far at least in the computer experiments concerning with the
adequate poincare map as well as with the time series analysis.
On the other hands, around A==6l a kind of structural change
is observed in the strange attractor, where the sharp change
appears .in the third Lyapounov spectrum K3‘. -This situation
reminds us of the second ordervphase transition between two chao-
tic attractors. It is shown in §6 that the dimension of the
strange attractor is an appropriate chaos parameter charactering

the chaos-chaos transition.

§5. Theoretical reconstruction of the time correlation .function

As told in §3, x{(t) is separated into two parts;

x(t) = P(t) + 6(t) (10)

where P(t) is well approximated by the poissonian process. The

time correlation function P(t)==<x(t')-x(t'+t)> is given by;

F(£) = <P(L')P(t'+t)> + <P(£')0(t'+t)>

(11)

+ <O (t')P(L'+E)> +<B(t')0 (L£'+t)>
When 6(t) is approximated by,
(12) -
- ot
6(t) -‘eoe coswot ,
_ v _ o~ ot
Gc = 0(T) = Goe costT

where, ec is the threshold value above which the flip-flop jump
occurs, and T is the zero crossing recurrence time, and o, mO

are the adjustable parameter for the system under consideration.
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The distribution of the initial value 90 is given by'the recur-

rence. time distribution as follows,

A | fc \~-A/a
‘aeo (fga ) (13)

where A characterizes the poissonian process P(t) ;

<P(t,)P(t,+£)> N e-—2)\t : (14)

Egs. (11) ~ (14) enable us to de;ive the analytical expression

for T (t) .

§6. Hausdorff dimension of the symbolic time series

When the transition prdbability/ Py (5=P10) and the sta-
tionary distribution P0 (=:P1) are calculated by the computer
experiments, the Haﬁsdorff dimension b, or the Kolmogorov - Sinai
entropy H (=D, 1In2) is determined‘S)

KS H S
-1
D, = = I P,P,.1lnP,. (15)
H In2 i3 i 1ij ij

When POl approaches to zero or unity, the time course of the
symbolic dynamics becomes almost invariant or periodic, respec-

tively,and as the result, D,  goes to zero. This situation is

H

called forced intermittency. Increasing the level of the extgr—

- nal regular perfurbation, it seems that the forced intermittent

chaos comes to appear. Figure 9 shows the Hauédorff aimension
Fig.9.

for the forced Lorenz chaos. The Hausdorff dimension decreases

monotonically for O0< A< 20 . (DH(A==0)==0.9895). As for A> 15
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the simple markovian identification breaks down partially, it is
difficult to certify the appearence of the forced intermittency
in the present system. The problems of the intermittenéy is
lightened again from the anothef angle in § 8, where the free
intermittent chaos is discussed carrying out with the autohomous
Lorenz system.

§7. Hausdorff dimension of the strange attractor6L7)

The outer measure £%(a) is calculated by the computer simu-

lation as follows,ﬁ)
% (a) = infr(diams)® 2 pN (16)
i ; ,
where, IdfT( v Y
- . QX ejregn~e3)i|
P dlamsi  qET(e1~e5) ]
N = p_3|dfT(élLeZAe3)|i A (17)

Here,bdfT is the T-time shift operator in the tangent space and
ei is the unit eigen vector corresponding to the Lyapounov No.Ki.

Using the numerical approximate form of eq. (17),

2(a) = exp{T {K3(a~3)+EKi}} (18)

Therefbre, the Hausdorff dimension of the strange attractor Djp

is estimated at the change over point of %(a) for T-+® as follows,

which is shown in Fig.10. Except the point of A =61 where

Fig.10.
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singularity is observed, DA seems a smooth function of A .

(DA=O==2.06). For 83 5A<<116 , the motion is periodic.
In the projected k-dimensional space spaned by {ei roey s
2
... © 1} , in general, the dimension spectrum D, (i,,...1i, ) is
iy A1 k
given by,
i, i) =k Riie 20
DA(ll,lz,..;lk) = Kk

Here the diameter p and the number of the covering N are defined

as follows,

0 *Idf (elAezA..Aek)l

|ag? (elAezA..Aek 1)|

(21)

N ='p_k|dfT(elAe ek)l
and K1 > K2 _?_ - Kk ’ Kk# 0 "are assumed. The dimension spec--
“trum is negative when the mapping is expanding in the projected
space. If the computational argorithm of the outer measure is "
refined taking the curvature of the flow into account, it may be

possible to get the much more precise estimation of the "diiten-

sion of the strange attractor.

§8. IntermittencyB)

In what follows, discussion is 1imitted to the autonomous
system; A=0 . Various types of 1nterm1ttency are observed in
the Lorenz system when the parameters (r, 0, b) are taken ade—

quately. Figure 11 shows an example of the 1nterm1ttency. The

Fig.1ll.
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attractor is a limit cycle for r <166.06 , where the symbolic
time series of the zero-crossing time {ni} is {2,2,2, ...} .
Here ng stands for the quantized recurrence time as mentioned
in §3. For r >166.06 , however, the intermittent chaos comes
to appear through destabilization of the limit cycle, where the
corresponding symbolic series becomes irregular mixing of n=1

and n=2 . For short that is represented as follows,

{nj} = {2;1} (22)
namely, this means that the uniform series of {2} is interrupted

intermittently by n=1 . Figure 12 shows the Lorenz plot for

Fig.1l2, Fig.13, Fig.1l4

r=166.6. Reducing the value of r , the degree of the intef-
ruption decreases and the long range coherence of the symbolic
series increases. As shown in Figs. 13 and 14, the level of
the continuous spectral component diminishes relatively, and
the long time tail appears. For r <166.06 , the full coherence
is attained.

In general, the intermittency in the Lorenz system is re-

presented by the following symbolic series,

' (23
{n;} = {m;1,2,...,m-1} )

for example, the Lorenz chaos for (o=16, b=4, r=138) is the
case of m=3 . If the residence time distribution for n=m'
(<m) is well approximated by exponential function, it is

strongly suggested that the simple markovian identification is

possible for the symbolic series {ni} under consideration.

- 10 -
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Indeed,vfhe adjustability of the identification was ascertained
partially by the computer experiments in the cases mentioned
above. This markovian identification enables us.fo characterize
the intermittency in terms{oﬁ the Hausdorff dimension in the
framwork of the markovian assumption as shOWn'in §3.

The intermittency appeared in the Lorenz system is well
approxiﬁated by the one dimensional A model which is shown in
Fig.15; For the case of D<C , all the motion approaches to a
periodic motion but for the caée‘of D>C , there appears the
chaotic orbit. When the intervals’ O;x'< A, and ,Aix <1 aré
symbolized by Orénd 1, respectively,‘the recgr:enceJtime seriés

satisfies eq.( 23 ).

5 9. Supplementary discussion

The one-dimensional statistical identification is not always
effective for the analysis of the high dimensional chaos or
the hyperchaos?) In some cases, however, the validity of the one-
dimensional identification is recovered by using the appropriate‘
projection or the coarse-graining operation for the state and
time. 1In such circumstances, even the hyterchaos may be under-
stood in the framework of the suitable markovian process_in the
projected space. At least from the view point of statistical
mechanics, it seems that the goal is to find out the»projéétion
rule leading to the possible markovian description. The strategic

chart used in the present report is summarized in Fig.16.

-11 -
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The time series analysis mentioned in §2 is naturally
extented to the high dimensional identification by constructing
the corresponding auto-regressive statistical model, where the
markovian order of the hyperchaos is reasonablly defined by the
computer experiment.3)

In § 8 we showed the methodology characteriging the inter-
mittency, where the intermittency degree is measured by the
Hausdorff dimension of the corresponding symbolic time series,
in other words, by the deviation from the full coherent reference
state. Though in § 8 the deviation was well approximated
partially by the simple random process, the validity of the
markovian identifiéation is not guaranteed in general and that
depends strongly on the coarse-graining operation used there.
Therefore, from the general view poiht, it is still an open
question whether the intermittency can be described reasonablly
in the markovian framework or not.

In §§ 6,7 the dimension spectra defined by eqg.(20) were
"appreciated as the adequate chaos parameters. These are
surmised to estimate the approximate value‘of the self-similarity
dimension of the strange attractor from above in each restricted
space. It is expected that the formulus is refined more
precisely on. Even in the case of the one-dimensional transfor-
matio&?)many problems remain unsolved as concerns the character-

ization of the complexity and the randomness of the motion.

-12 -
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Fig.1l.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

Number distribution of the flip-flop jump event

n

Figure Captions

Phase diagram of entrainment.

(r=28, ¢=10, b=18/3) Chaotic response appears in

the dark region and periodic one in the white region.
Magnification of phase diagram

Typical periodic orbit is illustrated in x - z plane.

Orbit, power spectral density and time corelation function.

(r=28, 0=10, b=28/3)

Return map of the zero-crossing time

(r=28, 0=10, b=8/3, A=0)

Time course of x(t) and Flié-Flip‘jump!prOCess
(r=28, g=10, b=8/3, A=0) f
(r=28, 0=10, b=8/3, A=0) "

Recurrence time distribution

(r=28, 6=10, b=8/3, A=0)

Lyapounov spectra

(r=28, 0=10, b=8/3, B=6.0)
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Fig.9. Hausdorff dimension of the symbolic time series.

(r=28, 0=10, b=8/3, B=6.0)

Fig.10. Hausdorff dimension of the strange attractor.

(r=28, 0=10, b=8/3, B=6.0)

Fig.11l, First Lyapounov spectrum for the intermittent chaos.

(0=10, b=8/3, A=0)

Fig.12. Lorenz plot for the intermittent chaos.

(6=10, b=8/3, r=166.6, A=0)

Fig.13. Spectral evolution of the intermittent chaos.
a) =10, b=8/3, r=166.6, A=0

b) ¢=10, b=8/3, r=166.13, A=0
Fig.l4. Onset of the long range coherence in the intermittent chaos.
a) =10, b=8/3, r=166.6, A=0
b) 0=10, b=8/3, r=166.1, A=0
Fig.15. One-dimensional A model for the intermittent chaos.
a) 0=16, b=4, r=138.0, A=0

b) =10, b=8/3, r=166.1, A=0

Fig.16. Strategic flow chart.
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