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Recent development of

differentiable dynamical systems in Japan

Kenichi Shiraiwa

(Nagoya University)

§1. Introduction

We shall give a brief survey on recent development of diff- .
erentiable dynamical systems in Japan. The works surveyed ;n
this article were published mostly between 1970 and 1980 by
Japanese mathematicians and scientists.

The objects of the works surveyed in this article are most-
ly limited to the qualitative (topological) theory of differenti-
able dynamical systems and its closely related topics. Wehdo‘
not intend to be complete, but we would be very grateful if
the reader would kindly point out the works left unmentioned in
this article.

| The general references for this field of research are the
followings: D.V. Anosov and Ja.G. Sinai [2], R. Bowen [17],
Ja.G. Sinai [122], and S. Smale [124].
§2. Stability and generic properties

The notién of structural stabilitj‘was first introduced by
A. Andronov  and L. Pontrjagin in 1937. Study of structural
stability was continued by Lefschetz's school. In 1960, M. Peixoto
obtained the necessary and sufficient conditions for the smooth
flows on 2-dimensional compact differentiabie manifolds to be
structurally stable generalizing the result of Andronov—Pont;jagin4

He also obtained that the set of all structurally stable flows
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of class Cl on a 2-dimensional compact differentiable manifold
is dense in the set of all Cl—flows on it in Cl—topology. Based
on this fact, S. Smale introduced the notion of Morse-Smale
systemAand started to begin the study of differentiable dynamical
systems. Morse-Smale systems exist on any compact differentiable
manifolds.

In 1962, D.V. Anosov introduced the notion of Anosov system
and proved its structural stability. Using this result, he
succeeded in proving the structural stability of geodesic flows
on negatively curved manifolds) Anosov systems exist only on
the very restricted manifolds. In 1970, J. Palis and S. Smale
prbved that Morse-Smale systems were structurally stable.

These results are unified and generalized as follows.

Theorem (J. Robbin,‘197l; R.C. Robinson, 1974) Axiom A,
systems with strong transversality conditions are structurally
stable.

Since Anosov systems and Morse-Smale systems satisfy‘AxiomI\
and strong transversality condition, the above theorem is a
generalization of Anosov and Palis-Smale. (Also, the following
is proved.

Theorem (S. Smale, 1970; C. Pugh and M. Shub, 1970) Axiom A
systems with no cycle condition are {i-stable.

Converse of the above two theorems is conjectured and
investigated by S. Smale, J. Palis, S. Newhouse, R. Mané,

V.A. Pliss, S.T. Liao, and others. Recently, A. Sannami succeed-
ed in proving the converse problems for C2—diffeomorphisms on

2-dimensional closed manifolds.
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In 1966, Smale showed that the set of all structurally
stable systems was not dense in the set of all dynamical systems
in higher dimensions. Many tried to find a suitable class of
dynamical systems which is dense in the set of all dynamical
systems and is stable in some sense. Toward this problem,

G. Ikegami intrecduced the notion of weak stability and studied

it in [33], [34], and [36]. The set of all weakly stable systems
properly contains the set of all structurally stable systems in
general, but it is not dense in the set of all dynamical systems.
Under Axiom A, weak stability implies structural stability.

Generic properties for dynamical systems are very important
in the study of dynamical systems. A generic property holds for
almost all dynamical systems. The first important and basic
generic properties were obtained by I. Kupka and S. Smale in
1963. C. Pugh's closing lemma obtained in 1967 implies that
Axiom A(b) is a generic property, where Axiom A(b) states that
the set of all periodic points is dense in the nonwandering set.

T. Koike [60] says that the following is generic: If M is
a 2-~dimensional closed manifold and f:M>M iszadiffeomorbhism,_
then the interior of the nonwandering set of f is empty or f is
an Anosov diffeomorphism. As a corollary to this, the following
is generic: If M is a 2-dimensional manifold andtis not a torus,
then a diffeomorphism f : M +M has empty interior for the non-
wandering set.

Y. Togawa [128], [129] show that the following properties
are generic: (i) An Axiom A diffeomorphism has only trivial

centralizers. (ii) A diffeomorphism has no k-root for any integer
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k, k#+*1l. As a corollary to (ii), we cannot generically imbed
a diffeomorphism into a smooth flow.
§3. Anosov systems

D.V. Anosov [1l] gives basic results on Anosov systems.

Many important results concerning the efgodic*properties‘of
Anosov sSystems were obtained ‘including Ja.G. Sinai's results.:
Besides these results, J. Moser, J. Franks, S. Newhouse, W.M.
Hirsch, A. Manning, and others obtained various important results.
The follqwing results are contributions of our colleagues.

K. Shiraiwa [116] gives a necéssary condition for the
existence of an Anosov diffeomorphism and gives examples of -
maﬁifolds which do not admit an Anosov diffeomorphism. K. Yano
[150] shows that there are no transitive Anosov ‘diffeomorphisms
on negatively curved manifolds.

K. Takaki [126] shows that Anosov diffeomorphisms are
structurally stable in the space of all lipeﬁofphiSms (Lipschitz
homéomorphisms). K. Kato and A. Morimoto [53] shows the topolo-
gical stability of Anosov flows and the triviality of centralizers
of Anosov flows. The -last property of Kato-Morimoto's result is
generalized by M. Oka [93] for expansive flows.

There are other results by N. Otsuki [103], [104] and
A, Morimoto [85].

§4, Hyperbolic sets, Axiom A, and related topics

The notion of Axiom A Was‘introduced'by Smale to include
both Morse-Smale and Anosov systems and to give new examples ‘such
as horseshoe sytems. Theory of Axiom A systems plays the most

important role in Smale's theory of differentiable dynamical
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systems. Many important results are obtained by Smale's school
and we need a book to describe them.- We give here some results
obtained by our colleagues.

M. Kurata [69] states that Axiom A(a) does not imply Axiom
A(b) for a diffeomorphism f:M+M if dim M > 4. This gave a counter
example of Smale'é conjecture. Similar result was given by A.
Dankner [21] independently.

Ja.G. Sinai [121] constructed Markov partitions for Anosov
diffeomorphisms, and R. Bowen [15] generalized this for Axiom A
dif feomorphisms restricted on their basic sets. A Markov
partition of a system gives a semi-conjugacy from a suitable
symbolic dynamical system to the system; It plays an important
role in both ergodic theory and qualitative theory. M. Kurata
[66], [67], [68] investigated hyperbolic sets and obtained Markov
,partitidns<mfhyperbolic sets.

K. Kato and A. Morimoto [54] generalizes their work [53]
and shows that an Axiom A flow with no CO—Q-explosion is topolo-
gically Q-stable.

Pseudo-orbit tracing property (sometimes called stochastic
stability) is important for the study of dynamical systems (For
example, see R. Bowen [16], [17]). K. Sawada [109], A. Morimoto
[86] and K. Kato [50] show that an Axiom A diffeomorphism with
strong traﬁsversality condition has the pseudo~orbit tracing |
property. Using this reéult they affirmatively solved Takens'
conjecture. Related topics to the above theorem is treated by
K. Kato [51], A. Morimoto [87], T. Saséki [107}, K. Yano [147],

and N. Aoki [7].
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It seems that specification property introduced by R. Bowen
and used by R. Bowen, K. Sigmund [120], D.A. Lind [71], and others.
is very important for both ergodio theory and qualitative theory
of dynamical systems. N. Aoki [4], (5], [6], [7], N. Aoki, M.
Dateyama, and M. Komuro [11], M. yDateyama [20] investigate the
dynamlcs of the automorphlsms of compact metric groups 1nclud1ng
specification property and obtalned many 1nterest1ng results.

Expan51veness is also important for the study of dynamlcal
syetems. Anosov dlffeomorphlsms and the restriction of Axiom A
diffeomorphims on their basic sets are expansivei The followings
are works related to expansive homeomorphisms: N. Aoki and M.
Dateyama [10], N. Aoki and C. Saikawa [12], A. Koriyama [62],

A. Koriyama and Y. Matsuoka [63], A. Koriyama and T. Nagase [64],
M. Kouno [65], and M. Oka [93], [94].
§5. Topological entropy

The notlon of topologlcal entropy was lntroduced by R.L.
Adler, A.G. Konheim, and M.H. McAndrew in 1965. It is closely :
relatedyto the measure theoreticAentfopy; Many important contri-
butions were done by many mathematicians. The followings areqby
our colleagues.i 0 o | >’

S. Ito [451 estinated the topological‘entropy of a Cl-
diffeomorphiéﬁ of a compact Riemannian manifold from above.
This is generalized_by R. Bowen fof a Cl-map on a Riemannian
manifold.

K. Sasano [108] investigated the topological entropy of
the continuous maps of the circle in detail.

K. Yano [148] shows that the topological entropy of a
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homeomorphism of a compact topological manifold of dimehsion
greater than one is generically equal to the infinity. This
holds for continuous maps, too.

Other results are as follows: N. Aoki [3], T. Hamachi and
H. Totoki [22], M. Hata [23], T. Koike [61], T. Ohno [96],.
M. OsikaWa ande. Haméchi [100], and K. Yano [149].
§6. Chaos‘and relaﬁed tooics

E.N. Lorenz [72] derived the following system of ordiﬁary

differential equation from the convection equation:

r X' = -0ox+ o0y
y' = rx -y - xz
z' = =-bz + xy.

’

wjoo

He studied this equation numerically in the case of 0==10,1;=
r =28 and found that the solutions exhibited chaotic behavior.
Later, Y. Ueda and H. Kawakami found the similér result from
puffing's equétions. R8ssler also found many examples of chaos
from systems of ordinary differential equations in dimension
three. )

in 1974, R.M. May [83] found the similar phenomena for ghe
difference oquation of the first order arising from biological
populations Qith nonoveriabping generations. M. ﬁénon [28] gave
a two dimensional mapping exhibiting chaos which‘is.relatéd to "
both Lorenz model and May modél. | | |

Since then many investigations were done by many soientists.
We list some of our colleagues' iesulﬁs:

(1) Concerning Lorenz model: J. Nagashima and I. Shimada [88],

[89], I. Shimada {112]}; I. Shimada and T. Nagashima [1131, [114];
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K. Tomita and‘I. Tsuda [133].
(2) Concerning May model: S. Matsnmoto {751, [76]1. S. Ushiki,
M. Yamaguti, and H. Matano [140].
(3)‘Others: H. Daido [19], K. Ito [44], [44a]l, T. Kai and
K. Tomita [47], K. Tomita and H. Daido [130], K. Tomita and
T. Kai [131], K. Tomita and I. Tsuda [132], S. Ushiki [138].

Mathematical treatment for cnaes began with the work of
T. Li and J. Yorke [70] on the one dimeneional mapping. Theit
result is generalized by F. Marotto [73] to a higher dimensional
case. K. Shiraiwa and M. Kurata [119] generalizes both Marotto's
result and S. éﬁale's work [123]. M. Yamaguti and H. Matano
[141], M. Yamaguti and S. Ushiki [143] found chaos discretizing
some ordinary differential equations, ‘ vi .

Related works are ae follows: M. Hata [24], S. Ito, S.
Tanaka( and H. Nekadav[46], Y. 6ono [97], Y; Oono and M. Osikawa
[981, Y.‘00no and Y. Takahashi [99], M. Osikawa ande;'Oono [1011,
Y. Oshime [102], M. Yamaguti and S. Ushiki [142], [144].

§7. Dynanical systems from electrical networks

There are many interesting dYnemical syetems arising from
eleetricai networks. R. Brayton anva. Mesef;geve‘eabasiciiry
treatment on thie‘problem,'and S. Smale [1ZSj extenaed and gave
modern formulation te thie problem.

The folldwings are a part of the results obtained by the
collaboration of our colleagues: L.O. Chua, T. Matsumoto, and
S. Ichiraku [18], S. Ichiraku [30],,[311, [32]}; T. Matsumoto
{771, [781, [79]1; T. Matsumoto, L.O. Chua, H. Kawakami, and

S. Ichiraku [80]; T. Matsumoto, L..0. Chua, and A. Makino [81];
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T. Matsumoto and G. Ikegami [82].

Duffing's equations arisinag from nonlinear oscilations and
electrical networks are very interesting dissipative systems to
study.

Followings are some of our results C. Hayashi and Y. Ueda
[25]; C. Hayashi, Y. Ueda, and H. Kawakami [26]; N. Kakiuchi [48];
H. Kawakami [55], [56}, [57]; F. Nakajima [92]; K. Shiraiwav[117],
[118]; Y. Ueda [134], [135), [136], [137].

§8. Miscellany

(1) G. Ikegami [33], [34], [38] investigated the relation between
diffesmorphisms and their suspension flows.

I. Ishii [42], ([43] investigated minimal flows. Other
results related to the differentiable dynamical systems are as
follws: K. Hayashi [27], F. Ichikawa [29], G. Ikegami [35],

S. Matsumoto [74], K. Sawada [110], S. Ushiki [138].

(2) Concerning the limit cycles of planary flows, K. Yamato's
kwork [145] is’interesting. G. Ikegami's work [40] is related to
this problem.

M. Oka [95] treated difficult problem of classifications of
a certain type of homogeneous differential equations on the plane.

Other results related to the ofdinary differential equations
are J. Kato and F. Nakajima [49], F. Nakajima [90]} [91], and

G.R. Sell and F. Nakajima [111}].
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