Spitzer's Markov chains and non-linear integral equations of the Hammerstein type

Munemi MIYAMOTO

(Yoshida College, Kyoto University)

Spitzer [5] has introduced Markov chains, whose space of "time parameters" is an infinite tree T, and whose state space is a set {-1, +1}. He investigates Gibbs distributions on T that are Markov chains of such construction. We generalize Spitzer's results to a case when the state space is a compact set. If the state space consists of two points as in a case of Spitzer, all Markov chains are reversible. So, in that case, the "time parameter" space T need not be equipped with a direction. But, since Markov chains may not be reversible in our case, we must introduce a direction into T.

Let T be an infinite directed tree, in which s branches emanate from every vertex and n branches flow into every vertex. Generalizing Spitzer's construction [5], we define Markov chains whose space of "time parameters" is the tree T, and whose state space is a compact metric measure space (X,β,μ) . Let F(x,y) be a measurable function on $X \times X$. We assume neither boundedness nor symmetry F(x,y) = F(y,x) of F. If F satisfies

(A,1)
$$\int \int e^{-(n+s)F(x,y)} \mu(dx) \mu(dy) <+\infty$$

or

(A,2)
$$\sup_{x} \{ \int e^{-F(x,y)} \mu(dy), \int e^{-F(y,x)} \mu(dy) \} <+\infty,$$

then we can define Gibbs distributions on T with the potential F ([1],[3]). Let $\mathcal{M}(F)$ be the set of Markov chains that are Gibbs distributions with the potential F.

Putting $X(x,M) = \{y \in X; F(x,y) \leq M\}$ and $X(x,M) = \{y \in X; F(y,x) \leq M\}$,

we assume that there exist M and an integer k such that

Theorem 1. Under the above assumptions, a Markov chain with the transition density p(x,y) belongs to $\mathcal{M}(F)$, if and only if p(x,y)has the expression;

$$p(x,y) = \lambda(s,n)u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x,y)},$$

where $\lambda(s,n)$ is the Perron-Frobenius eigenvalue of the kernel $e^{-F(x,y)}$ if s=n=1, and $\lambda(s,n)$ =1 if otherwise, and u and v are positive measurable functions satisfying the following integral equations of the Hammerstein type;

The expression is unique. The invariant density h(x) of p(x,y)has the form

$$h(x) = c u(x)^{s} v(x)^{n}$$
,

where c is a normalizing constant.

Theorem 2. The set $\mathcal{M}(F)$ is not empty, either if

(A,4) $\text{fe}^{-F\left(x,y\right)}\mu(\text{d}y)$ and $\text{fe}^{-F\left(y,x\right)}\mu(\text{d}y)$ do not depend on x, or if

(A,5)
$$\sup_{x} \{ \int e^{-(n+s)F(x,y)} \mu(dy), \int e^{-(n+s)F(y,x)} \mu(dy) \} < +\infty \}$$

and (A,6)
$$\sup\{fe^{(n+s)(n+s-2)F(x,y)}\mu(dy), fe^{(n+s)(n+s-2)F(y,x)}\mu(dy)\}$$

We say that p(x,y) is <u>reversible</u>, if h(x)p(x,y) = h(y)p(y,x). We say that a potential F is <u>uniformly symmetrizable</u>, if there exsists a symmetric potential F such that $\sup |F(x,y) - F(x,y)| < +\infty$ x,y

and such that \hat{F} determines the Hamiltonian which is equivalent to that determined by F.

Theorem 3. We assume (A,3), (A,5) and

(A,6)'
$$\sup_{x} \{ \int_{\mathbb{R}^{n+s}} (n+s-2) F(x,y)_{\mu}(dy), \int_{\mathbb{R}^{n+s}} (n+s-2) F(y,x)_{\mu}(dy) \}$$
 <+\infty,

where $(n+s)(n+s-2)' = \max\{(n+s)(n+s-2),1\}$. Then, the following three statements are equivalent to each other.

- 1) A potential F is uniformly symmetrizable.
- 2) There exists a reversible Markov chain in $\mathcal{H}(F)$.
- 3) All Markov chains in $\mathcal{M}(F)$ are reversible.

If F is symmetric, u and v in Theorem 1 can be regarded as positive eigenfunctions of the kernel $e^{-F(x,y)}u(y)^{s-1}v(y)^{n-1}$, which implies u=c v. Therefore,(*) reduces to

$$\begin{cases} u(x) = \lambda(s,n) \int e^{-F(x,y)} u(y)^{s+n-1} \mu(dy), \\ \int u d\mu = 1, & \text{if } s=n=1, \\ \int u^{s+n} d\mu < +\infty. \end{cases}$$

In case the state space is the unit circle S^1 which we identify with [0,1), we can construct an example

$$u(x) = \int_0^1 \Gamma(x-y) u(y)^2 dy$$
,

where Γ is positive, even and of C^{∞} -class and u is positive and non-constant. The Markov chain in $\mathcal{M}(-\log\Gamma)$ determined by u is not rotation-invariant. On the contrary, all Gibbs distributions in Z^2 with the state space S^1 , whose potential is of finite range, of C^2 -class and rotation-invariant, are also rotation-invariant [2].

In the following we consider potentials with the form βF , where $\beta > 0$ is called the reciprocal temparature.

Theorem 4. Assume (A,3) and

(A,7)
$$\sup_{x} \{ \int_{x} |F(x,y)|_{\mu}(dy), \int_{x} |F(y,x)|_{\mu}(dy) \} <+\infty.$$

If β is sufficiently small, then $\mathcal{M}(\beta F)$ consists of a unique Markov chain.

Theorem 5. Let X be a finite set and let $\mu(\{i\}) > 0$ for all $i \in X$. Let F be a symmetric potential on X satisfying

(A,8)
$$F(i,j) > F(j,j) + \frac{1}{n+s-1} |F(i,i)-F(j,j)|$$

for all $i \neq j \in X$. Then, the number of Markov chains in $\mathcal{M}(\beta F)$ is equal to $2^{\#X}$ -1 for sufficiently large β , if s+n > 2.

Details are found in [4].

References

- [1] Р.Л.Добрушин: Описание случайного поля при помощи условных вероятностей и условия его регурярности, Теория вероят. примен., 13 (1968), 201-229.
- [2] R.L.Dobrushin and S.B.Shlosman; Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Commun.math.Physics, 42 (1975), 31-40.
- [3] O.E.Lanford and D.Ruelle; Observables at infinity and states with short range correlations in statistical mechanics,

 Commun.math.Physics, 13(1969), 194-215.
- [4] M.Miyamoto; Spitzer's Markov chains with measurable potentials, to appear in J.Math.Kyoto Univ.
- [5] F.Spitzer; Markov random fields on an infinite tree, Ann.of Prob., 3(1975), 387-398.