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Spitzer's Markov chains and non-linear integral

equations of the Hammerstein type
Munemi MIYAMOTO
(Yoshida College, Kyoto University)

Spitzer [5] has introduced Markov éhains, whose space of "time
parameters" is an infinite tree T, and whose state space is a set
{-1, +1}. He investigates Gibbs distributions on T that are
Markov chains of such construction. We generalize Spitzer's
results to a case when the state space is a compact set. If the
state space consists of two points as in a case of Spitzer, all
Markov chains are reversible. So, in that case, the '"time parameter"
space T need not be équipped with a direction. But, since Markov
chains may not be reversible in our case, we must introduce a
direction into T.

Let T be an infinite directed tree, in which s branches
emanate from every vertex and n branches flow into every vertex.
Generalizing Spitzer's construction [5], we define Markov chains
whose space of '"time parameters' is the tree T, and whose state
space is a compact metric measure space (X,8,1). Let F(x,y) be
a measurable function on X x X. We assume neithér boundedness

nor symmetry F(x,y) = F(y,x) of F. If F satisfieév

(A1) Sre” @SIFGY) ax)p(dy) <+e
or 4

(A,2) sup{fe—F(X’y}u(dy), fe-Fcy’X)u(dy)} <+w,'
X o
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then we can define Gibbs distributions on T with the potential
F ([1],[3]1). Let M(F) be the set of Markov chains that are Gibbs
distributions with the potential F.

Putting X(x,M)={yeX;F(x,y)<M} and Xfx,M)={yeX;F(y,x)§M},

we assume that there exist M and an integer k such that

~

o »,P#ﬂ(xlfxz{'f:,xk);H(X\iSIX(ﬁigM))-=“Q},> 0,
(A,3) ) o |
e g -

Ihedrém 1. Under the above aSsumptions,'a Markov chain with the

traﬁsition’density p(x,y) belongs toj%{F), if and only if p(x,Y)”

has the expression; V o
Cply) = A Gs,mu(x) tu) Syl F OOV

where A(s,n) is the Perron-Frobenius eigenvalue of the kernel

e_F(X’Y) if s=n=1, and A(s,n)=1 1if otherwise, and u and v éré’

positiVe"méasurable functions satisfying'the following intégral

 equations of the Hammerstein type;

As,m)fe F OOV u Sy ey,

“u(x) =
vix) = A(s,n)fe FOHXumy S Iy )™ ay),
(*) SuSvP lay = fusnlvndu,

Sudw = fvdp = 1, if s=n=1,

FuSvldy <4,

The expression is unique. The invariant density h(x) of p(x,y)
has the form

h(x) = ¢ u(x)sv(x)n,
where ¢ is a normalizing constant.
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Theorem 2. The setJPﬂF) is not empty, either if
(A,4) fe_P(x’Y)u(dy) and fe—F(y’x)u(dy) do not depend on x,
or if
(A,5)  sup{re” (MSIFCOYD, cayy, pem (*SIFOLX)y (ay)) <ovor
and >

ﬁA,G)“ sup{fe @+s) (M+s=2)F(X,¥), gy o (*s) (n*s-D)F(Y5X)y, (gy) 3 -
X .
RTINS LKA

We say: that p(x,y) is reversible, if h(x)p(x,y) = h(¥)p(y,x).

We say that a potential F is uniformly symmetrizable, if there

exsists a symmetric potential £ such that supIF(x,y)-ﬁ(x,y)1:<+w
X,y

and such that £ determines the Hamiltonian which is equivalent to

that determined by F.

Theorem 3. We assume (A,3), (A,5) and;r
(A,6)" Sup{fe(n+s)(n+s-2)'F(x,y)u(dy)’fe(n+s)(n+s-2)fF(y;X)u(ay)}
X
S ' l<+°°‘,
where (n+s)(n+s-2)' = max{(n+s)(n+s-2),1}. Then, the followfﬁg‘y
three statements are equivalent to each other.
1) A potential F is uniformly symmetrizable.
2) There exiéts a reversible Markov chain inJMLF).

3) A1l Markov chains in M(F) are reversible.

If F is symmetric, u and v in Theorem 1 can be regarded as
. positive eigenfunctions of the kernel e-F(X’Y)u(y)s_lv(y)n—l,

which implies wu=c v. Therefore,(*) reduces to

u(x) = A(s,n)re POy Sl gy,

(x*) fudp = 1, if s=n=1,

fu3+ndu <+00,



126

In case the state space is the unit circle S1 which we

identify with [0,1), we can construct an example
_ .1 2
u(x) = ST (x-y)u(y)“dy,

where T is positive, even and of C”-class and u is positive and
non-constant. The Markov chain iny}ﬂrlogr) determined by u is
not rotation-invariant. On the contrary, all Gibbs distributions

in ZZ with the state space st

, whose potential is of finite
range, of CZ-class and rotation-invariant, are also rotation-
-invariant [2].

In the following we consider potentials with the form BF,

where B > 0 is called the reciprocal temparature.

Theorem 4. Assume (A,3) and

a,7) suplrel FE M cayy, rel POl ay)) cro.
X .

If 8 is sufficiently small, then/%(SF) consists of a unique Markov

chain.

Theorem 5. Let X be a finite set and .let p({i}) > 0 for all

i € X. Let F be a symmetric potential on X satisfying

(A,8)  F(i,i) > F(3,i) + maplF(1,1)-F(,3) |

for ‘all i%j ¢ X. Then, the number of Markov chains in JH(BF)

is equal to Z#X—l for sufficiently large B, if s+n > 2.

Details are found in [4].
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