On some properties of a minimal flow

- A topological characterization of the strict ergodicity -

I. Ishii (Keio Univ.)

1. Introduction.

A flow ϕ_{t} ($\mathsf{t} \in \mathbb{R}$) on a compact metric space M is said to be <u>minimal</u>, if M is equal to the orbit closure of each of its points. In the following, we always assume that our flow ϕ_{t} is a <u>minimal</u> flow on M . ϕ_{t} is called <u>strictly ergodic</u>, if it admits a unique normalized invariant Borel measure. In [1], Oxtoby has given some nice characterizations of the strict ergodicity (see Theorem A below).

It is known that ϕ_t is Lyapunov-stable if and only if ϕ_t has a unique normalized invariant measure μ and the unitary operator U_t in $L_2(M,\mu)$ defined by $U_tf=f\circ\phi_t$ has pure point spectrum. As is implied by this example, some metrical property can be characterized by a topological property. The Oxtoby's characterization of the strict ergodicity seems not to be purely topological. And so, in what follows, we shall try to give a purely topological characterization of the strict ergodicity.

Ž

2. Known results.

By C(M) we denote the set of real valued continuous functions on M. And for $f\in C(M)$, we define M(f,m,T) and M(f,m) $(m\in M,\ T\in \mathbb{R})$ as follows:

$$M(f,m,T) = \frac{1}{T} \int_{0}^{T} f(\phi_{t}(m)) dt , M(f,m) = \lim_{T \to \infty} M(f,m,T) .$$

A point p M is called <u>quasi-regular</u>, if M(f,p) is defined for every $f \in C(M)$. And by Q we denote the set of all quasi-regular points. Oxtoby's characterization is the following.

THEOREM A. ([1]) For a minimal flow (M, ϕ_{t}), the following three conditions are equivalent.

- (i) ϕ_{+} is strictly ergodic.
- (ii) Q = M.

(iii) M(f,m,T) $(T \to \infty)$ converges uniformly on M to a constant for each $f \in C(M)$.

It is known (see [1]) that for each $p\in Q$ there is a unique normalized invariant measure μ_D such that

$$M(f,p) = \int_{M} f d\mu_{p}$$

for any $f\in C(M)$. The following theorem of Schwartzman gives a relation between this invariant measure $\mu_{\bf p}$ and the "asymptotic cycles".

<u>THEOREM B</u>. ([2]) For any $p \in Q$ and any $g \in C(M,S^1)$,

$$A_p(g) = \int_M A_m(g) d\mu_p(m)$$
,

where $C(M,S^1)$ ($S^1=\{z\in \mathbb{C}\; ;\; |z|=1\}$) is the set of S^1 -valued continuous functions, and $A_m:C(M,S^1)\to R$ ($m\in M$) is defined by

$$A_{m}(g) = \lim_{T \to \infty} \frac{1}{2\pi T} (arg(g(\phi_{t}(m)) - arg g(m)) .$$

From these two theorems, it follows that if $\, \varphi_{\mbox{t}} \,$ is strictly ergodic, then $\, A_{\mbox{m}} (g) \,$ does not depend on $\, m$.

3. Topological characterization of the strict ergodicity.

In this section, we assume that M is an n-dimensional smooth manifold and φ_t is a smooth minimal flow on M . An open submanifold Σ with codimension one is said to be a <u>local section</u> if it does not contact with the flow everywhere. Moreover we call Σ a $\underline{\delta\text{-local section}}$ (δ > 0) if the mapping h defined by h(m,t) = φ_t (m) is a homeomorphism from $\overline{\Sigma}\times(-\delta,\ \delta) \quad \text{onto} \quad \underbrace{-\delta< t<\delta} \varphi_t(\overline{\Sigma}) \ . \quad \text{For two} \quad \delta\text{-local sections} \quad \Sigma_1$ and Σ_2 , we define a subset K(Σ_1 , Σ_2) of Σ_1 to be

$$K(\Sigma_1, \Sigma_2) = \{ m \in \Sigma_1 : \int_0^t (\chi_1(\phi_t(m)) - \chi_2(\phi_t(m))) dt > c > -\infty$$
 for any positive $t \}$,

where χ_j is the characteristic function of $\bigcup_{0< t<\delta} \phi_t(\Sigma_j)$. It can be shown that if $K(\Sigma_1, \Sigma_2)$ is neither empty nor Σ_1 , then it is a countable union of nowhere dense closed subset of Σ_1 . With this definition we can give a topological characterization of the strict ergodicity as the following.

THEOREM C. ϕ_t is strictly ergodic if and only if the following condition (*) is satisfied:

(*) whenever $K(\Sigma_1, \Sigma_2)$ is neither empty nor Σ_1 , for any compact subset K of $K(\Sigma_1, \Sigma_2)$ and for any local section Σ , there is a bounded function $F: K \to R$ such that $\hat{F}(K) \subset \Sigma$ and \hat{F} is injective ($\hat{F}(m) = \phi_{F(m)}(m)$).

Moreover we can prove that

THEOREM D. If ϕ_{t} is not strictly ergodic, then for any normalized invariant Borel measure μ there are δ -local sections Σ_1 and Σ_2 such that $K(\Sigma_1, \Sigma_2) \neq \phi$, Σ_1 and $\mu(\bigcup_{0 < \mathsf{t} < \delta} \phi_{\mathsf{t}}(K))$ is positive for some compact set $K \subset K(\Sigma_1, \Sigma_2)$.

In the following, we shall give an outline of the proof of $\label{eq:theorem C} \text{Theorem C . } \text{First we state a lemma.}$

<u>LEMMA</u>. For any local section Σ we can construct a minimal flow δ_{t} on a compact metric space \tilde{M} which has the following properties:

- (i) $\tilde{\phi}_{t}$ is an extension of ϕ_{t} , namely there is a continuous map $p:\tilde{M}\to M$ such that $p\circ\tilde{\phi}_{t}=\phi_{t}\circ p$,
 - (ii) $\tilde{\Sigma} = \overline{p^{-1}(\Sigma)}$ is a cross-section of $\tilde{\phi}_t$,
- (iii) to each invariant measure $\tilde{\mu}$ of $\tilde{\phi}_t$, there corresponds an invariant measure μ of ϕ_t such that $\mu = \tilde{\mu}_0 p^{-1}$ and this correspondence is one-to-one.

For the method for constructing such a minimal flow, one should refer to [3].

Outline of the proof of THEOREM A.

(Sufficiency) By the lemma, it is sufficient to show that the Poincare-map T induced by ϕ_{t} on the cross-section Σ has a unique normalized invariant Borel measure. The condition (*) implies that T has an invariant measure ν which satisfies that $\nu(\mathsf{p}^{-1}(\Sigma_1)) = \mathsf{p}^{-1}(\Sigma_2)$) (Σ_1 and Σ_2 are open subsets of Σ) if and only if $K(\Sigma_1, \Sigma_2) \neq \phi$, Σ_1 or $K(\Sigma_1, \Sigma_2) - \Sigma_1 = K(\Sigma_2, \Sigma_1) - \Sigma_2 = \phi$. And moreover we can see that this invariant measure ν is the unique one.

(Necessity) Suppose that $K(\Sigma_1, \Sigma_2)$ is neither empth nor Σ_1 and for some its compact subset there is a local section Σ for which there is no bounded function F such that \hat{F} is injective. We can construct a minimal flow $(\tilde{M}, \tilde{\gamma}_t)$ satisfying (i),(ii),(iii) of the lemma so that $\tilde{\Sigma}_j = p^{-1}(\Sigma_j)$ (j = 1, 2) are both cross-sections of $\tilde{\gamma}_t$. Here we define functions τ_j and T_j (j = 1, 2) on M as follows:

$$\begin{split} \tau_{j}\left(\tilde{\mathbf{m}}\right) &= \sup\left\{\,\mathbf{t} \,\leq\, 0 \,\mid\, \tilde{\phi}_{\mathbf{t}}\left(\tilde{\mathbf{m}}\right) \,\in\, \tilde{\Sigma}_{j}\,\,\right\} \\ T_{j}\left(\tilde{\mathbf{m}}\right) &= \inf\left\{\,\mathbf{t} \,>\, 0 \,\mid\, \tilde{\phi}_{\mathbf{t}}\left(\tilde{\mathbf{m}}\right) \,\in\, \tilde{\Sigma}_{j}\,\,\right\}\,\,, \end{split}$$
 and define $f_{j}:\, \tilde{\mathbf{M}} \,\rightarrow\, S^{1}$ by

$$\begin{split} f_{j}\left(\tilde{\textbf{m}}\right) &= \exp\left(2\pi\sqrt{-1}\tau_{j}\left(\tilde{\textbf{m}}\right)/T_{j}\left(\hat{\tau}_{j}\left(\tilde{\textbf{m}}\right)\right)\right) \text{ , } \left(\hat{\tau}_{j}\left(\tilde{\textbf{m}}\right) = \tilde{\phi}_{\tau_{j}\left(\tilde{\textbf{m}}\right)}\left(\tilde{\textbf{m}}\right)\right). \end{split}$$
 Because $\tilde{\Sigma}_{j}$ is a cross-section, f_{j} is continuous. Then, according to the assumption on Σ_{j} , we can see that for $f = f_{1}/f_{2} \in C\left(\tilde{\textbf{M}},S^{1}\right)$, $A_{\tilde{\textbf{m}}}\left(f\right)$ cannot be independent of $\tilde{\textbf{m}}$. Hence,

by Theorems A and B, $\tilde{\phi}_{\mathsf{t}}$ is not strictly ergodic, and so ϕ_{t} is also not strictly ergodic.

REFERENCES

- [1] Oxtoby, J.C., Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136.
- [2] Schartzman, S., Asymptotic cycles, Ann. of Math. 66 (1957), 270-284.
- [3] Ishii, I., On the first cohomology group of a minimal set, Tokyo J. of Math. 1 (1978), 41-56.