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On the existence of Cohen extensions and Zjé predicates I
By Yutaks YASEIDA*

In the present paper, we shall consider only Cohen extensi-
ons that do not use notions of forcing Which are proper classes
in a given model. From now on, accoding to Takahashi [13], thig

kind of Cohen extenmsions we will call Cohenian extensions.

Let f,be the first-order language with the equality symbol
"=" and the membership relation symbol "&", but without other
non-logical symbols. We use ZF for the Zelmelo-Fraenkel axiom
system (extensionality, regularity, infinity, union, replacement
and power set) that is formulated in _E,, and g_li‘_C_ for ZF plus the
axiom of choice formulated in [ .

Suppose that MWis a countable standard transitive model for
4ZF. For each set m of .yf,, we choose a constant symbol m calledr
the name of me It is understood that different names are chosen
for different sets. The 1a,nguagé obtained from £by adding all
names of sets in Wl is denoted by ﬁm.

We shall consider the following problem: Let @ be a sente—

nee of £m. Then: can y_r_g find a Cohenian extension of W that satisfi-

es ¢ ?

*) The auther is im Dro M. Takahashi's debt for several useful
suggestions. Also he gave me that Solovay obtained a simple proof
of Takahashi's”’ theorem, but I-could not know his proof.
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Since there is a senmtence of [, that is not true in arbitrary
structure for £ » some restriction on @ is ne'cessary in order %o
answer our problem. Now let us consider only § for which there is =&
countable standard transitive model U for ZF that is an extension
of m,having the same ordinals as M, and that sétisfies P .

Now let us also suppose that M is one of Easton's model{[1])

that saf::is‘fi‘es“ the statement: for every regular cardinal §_, 2 NQNO:
Jensen] 3] c&nsfruc’ss 2 countable standard tresitive model Ml that is
an eitension%‘ §f"ﬂthaving- the same ordinsls as W(, and that satisfies
EC_E( the generzlized continuum hypothesis). Jensen's construction of
his model W uses a notion of forcing that is a pfqper class of Wl

Ve can not construct his model Tl using a notion of foréing which is
a set of W(, for, in arbitrary Cohenian extensiond, the collapsed
cardlnals constitute only a set of the Cohenlan exﬁens::_on(CL. Jech[Z]
) Thus anmswer to our problem is still negative. |

Lévy [5]shows that GCH is a %E sentence in his hlerarohy of
sef theoretic formulase This suggests that § must be restricted to
eith,ér z%ﬁ or T[%—E sentence of fm.

Let 9 be W'—::’E sentence of _fmsuch that there is a standard
trans,1t1ve extension T of WL that sat es @ o Then we have that
W=zlso satisfies § , for the W-— sentences of I are preserved
between W and ¥ . Thus 9 is satisfied in the trivial Cohenian
extension Wof W (use, as 2 notion of forcing, a linearly ordered

structure in W ). This give usg an affirmetive answer to our problem

when ¢ is & T{*-«- sentence of [ o
L

—_0
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Taekshashi [13] gives the following answer to our problem for the
7R
case of Z;‘—"—- sentences of[ 8
: 1 nt
THEOREM( Tekahashki [13]). Let wt and o be countable standard

transitive models for ZFC and assume thet T is an extemsion of MY

. . ZR .
having the same ordinals as WC. Ifeis _9-24/1—- sentence gﬁitha’c is
: [

ﬁrué in w , then there exists a Cohenian extension WI[GIof Wlthat

satisfies ¢ .

- Takahashi's proof of his theorem uses a notion of forcing
whose conditions are elements of the Lindenbaum algebra of an
infinitaly propositional logice

We shall show that Takahash's theorem may be proved With a very
gimple notion of forcimg. Since in order to do forcing over nlwe need
only to be able to code the forcing language and to defime the forcing
relation imW, and these do not need the axiom of choice (Cf. Jensen
[4]), our proof will improve Takshashi's theorem such, that the
theorem applies to models Wland ¥ that do not satisfy the axiom of
choice. Also, we shall apply Takahashi's theorem to some }2% predicatese.
We will present more applications in a following paper "II"..

We assume that the readers are familiar with the notions of
first-order languages, formal system of Zefmero—Fraenkel set theory
in such a language, models for such a system and the analytical
hierarchy, and the theory of forcingo The book of Shoenfield[8]
provides one of the best accounts of these notions énd their theorieso
Tor the theory of forcing, the readers should comsult the excellénﬁ

vapers of Shenfield[9]and Solovay[12,§1].
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Our notations and terminologies are those of Shoenfield[Q,lO]
and Solovay[12,81), but with the following differences: We use the
symbol " =" for logical equivalence, and small Greek letters "o",
"p" and "?" denote reals which are totall functions from ¢ intow,

but letter "¢" is a special variable for ordinals.

1., Shoenfield Absoluteness Theorems

Let us begin with a

theorenm which is a mo

model theoretic version of well known Shenfield

absoluteness theorem{ [8]). This is considerably importamt in our
- further work.
Let W and ¥ be standard transitive models for ZE and assume

that W is an extensiom of W having the same countable ordinals as M.
Then we have '

THEOREM 1. The z; and ﬂ]é sentences of [ are absolute
-
between W and T .

Proof. Shoenfield[8] shows that if § is a 3, sentence of Ly

then there is a A%E_’ formula (o) ‘having only one free variable g

and the same names as % such that
(*) ¢ = Aeew Ue)

By (*), the absoluteness of the A'?ZL-F- sentences(Cf. Karp[5])
and the hypothesis of the theorem,

WE ¢ = WE S <w 1)
=Je< Wit WL = 7('("')3
=< T AU ]

=WF Jocw o)

7

-
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=Mk S.

For a T[:é sentence 9 s consider the negation of? which is Z;.
C‘QCF.D.

2, M¥aim Theorem. Now we turn to our main theorem which is

a slight improvement of Takahashi's theorem.

Let M and Wbe countable standard transitive models for ZF
and assume that T(is an extemsion of M having the same ordinals
as M, »

'3 L . X ZF M . 3 .

THEOREM 2, If $isa 2—]-_- sentence of f kaving only mames

Abnh bk L JiE 2 R = At namas

Cyseessl )y then there exists a Cotienian extenmsionm WG] of Wi that

satisfies @ .

Proof., Without lseing generality, we may assme that @ has
only one name C.

Let A(x,y) ve a A, formula of ﬂhavﬁg only two free variables

X and y such that

4 =Jx ’A(x’E)'
is provable im ZF. Simce § is true in ¥, there is a set s of M suck
that A (x,y) is satisfied in W when x and y are irnterpletea by s and
¢ respectively. If\, s is already in W(, then our theorem is trivial.
Therefore we may assume that s is not in T{.

Now let us consider two partially ordered structures

¢, = (B, (w,m(cVw)), &)

o

and

g = (Hy (@,76(s)), ).

=B
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Then C c and C o @re notions of forcing which are sets in Mana TC
respectively. Now let G and Gs be a Tl~generic filter on Cc and
a TL[G‘C;] ~generic filter om C, respectively. Notice that ¢, is also
T{~generic filter on C,o Thus there is a bijection g  from wonto
TC(c V) int“ﬂ@c] and K[G’c;l . Let g be a bijection from w onto
TC{cVw)VUTC(s) in T([GC,GS] such that for every natural number i,
g(2i) = gé(i)o

Consider the bimary relation Rg, on wdefined as follows

R, ={(13) ewxw: (i) e els) }-

Ther g is an isomorphism between two stmé»tures (w,Rg) and
(TC(c Uw)UTC(s), € ). Let c* and s* be two natural numbers such

that

gle*) = ¢
and

g(s*) = s

Sin.ceﬂ(x;‘y) is aAO fo.rmula_oflj, and (IC(cVUw)UTC(s), €) is a

transitive substructure of {{,
(TC(C UCD) U TC(S), & ) }-‘- X(X,y) [S,CJ,
and thus

(w "Rg) = l(X’Y) [S*’C*.]'

Let \PO(X,:,I“) Be an arithmetical predicate having only two free

variables x and y, without names, which says that x and y are reals

-6
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such that x and v are the codes of binary relations on w, and for

all natural numbers i and jJ
'(*) i 2(<21,25> ) = 0 = y(< 21,255 ) = 0
and

v(<i,2541>) = 1&y(<2i+1,5>) = 1.

Let t{Jl(x) be aﬂ% predicate having only one free variable x ,
without names, which gays that x is a real that is the code of a
well-founded bhinary relation om @, and for all natural numbers

J and k

I

Vi(x(<i,3>) = 0 = x(<ik>) =0) = j = k.

Finally let l{tz(x) be an arithmetical predicate having only one free
variable x, without names, that is ’thé logical corx.junctiom of a
predi;:ate which says that x is a real and the predicate obtained
from the formula Y (x, ¥ ) By replacing X with s*y ¥ with _1'5_’,e UEV

with x(<1i,35>) = 0y Vu with ¥i and Ju with Fi. Then
Fx($o(xy) & P (x) & Y (x))

is a 22 predicate of _fmhavn.mg only one free real varlab‘le’ ¥ and
two names c* and s*, and we express this predicate as L{i(y) for
simplicitye.

Consider the binmry relation S, defined as follows
o
c

3, ={eren ewxw =%u)eQU)}’

ﬁhich is im m[Gc'] and Tu:Gc]e
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Let o and (gbe the codes of Rg and Sg‘ respectively. Hotice
: Sc
®is in M[GC-], so in ?}'[[GO_J and N_[GC,GS]. 3

binary relation om c such: that for all matural numbers i,j and k

o

ince Rw is a well-founded
©

(2i,23) € R, = (2i,23) & sgc,

and

(1,25+41) 5= (2i+1,3) &5
“e

03

. c
va((n,3) €R = (mk) €R) —»j =k
o
and SL' () says that 7[(3{,.3’) ig satisfied in (CU,RG) whenr x and ¥y
2 o

interpreted by s* and c¥ respectively, we have
wle,ed B ¢olxy) & $(x) & Y(x) o, pl
thus |
nie,ed k= P () L.

Now observe that M([G_ ] is 2 submodel of [G_,G_] having
the same countable ordinals as H[GC,GS],.'fOr, since the notions
of forcing (HNC")(C.U’TC(CUQ) )}, &) and (Eﬂo(w,TC(s)); C ) satisfy
the N.~chain condition im W and T respectively, the cardinals,so
the coumtable ordinals, are preserved between the two models M[Gc:l
and M[GC’GS] . By theorem 1, the Z]é predicate ¢(V) is also satisfied
in ()]f_[GC] when y is imtervreted by (> . Let be a real in NG cJ

Such that
mied = ¢olxy) & Wx) & ¢, 7, Bl

Consider the binmery relation R7 defined as follows
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= {(Lidewxw : 7(<i,35) =0}
Then' (m,R ) is & well~founded and extensional structure such that
(&),R]) ‘: ﬂ(X’Y)Ls*,C*]-

By Mostowski Collapsing Theorem ((7])s there are unique trensitive

set u and unique isomorphismT from (&),R) ) onto (u, €) in MLG‘c] . Thus

(ufe) F 7(“(1’;\7) [_'H(S*L 'H’( C*)] .

By (*) ~Scr is & subset of RI s and hence the inverse function of
e ,
g, is the restrictiom of Tto the set of even matural numbers.

S

Since ¢* is a even natural number,
TM(c*) = g7 (c*) = & H(c*) = o.

Notice that (u, €) is a substructure of MG’C], and 1(){,31") is a AO

formila of [ . Therefore we have
el B AlGen) In(e),e,
so |
Wicde 6.
C.Q.F.D,

3. Application. Now we shall give some applicatioms of our

theorem 2 that are concermed with the analytical hierarchy.

Let Wand Whe countable ’oran-sii:ivey m-delé for ZF + "there
existe an inaccessible cardinal” a:n'd assumé thet §{ is an extension
of M having the same ordinals. Let 3p%(X,R) be a Z% senterrc-eyywith

one name & for a real inW(.
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THEOREE 3. If the predicate IpP(d,p) is satisfied in M.,

thenm there exists z Cohemian extemsion W{GJ which bas a standard

-
1
r—

transitive submodel for ZF + 3{39(@_;9)-

Proof. Let 0 be an inaccessible cardinel in I and R“(G‘) the
set of sets in Ul with ranks less than €. Let Y(x,y,0) be the / ‘?-E
formula "(x,€) is a transitive model for ZF +& (o{,y)". Then ¥(%,y,%)
. nt
is satisfied in J{ when x and y are intrepleted by R (07) and some real
. 8 . ZE
in R (07) respectively. Since Ix Iy C{J(X,y,_o_() is a Ei— formula, by
our theorem 2 there exists a Colhenian extension M{[G] of Min which

this formuls is true. This means that there is a transitive standard

submodel of WG] in which 3{5@ (ﬁ,@) is true. C.Q.F.D.

The technique in the proof of theorem 3 has some interest
and many applications, and we present here one more applicatiom.

Let M and L be standard transitive models for ZF having the
same ordinals and assume that a’tsétisfies M (there exists a mesurahble
crdinal). Let P(dl,(3) be a T] é predicate which says that [ =O(#(Cfo
Solovay [11]). Since IBP(A,B) is proveble im ZE + M , for each
real & in WC)BIBP(E(_,@} ig true in{. Let S(/('x,y,goh_ﬁw"a A-iz-l‘: féi;mula
which says that (x,€& ) is a transitive model of ZF + P(d,y). Thenm
aéplying a similar argument im the proof of theorem 3 to this formula,

We have

THEOREK 4. There exists a Cohenian extension M[G] of WX

which has a standard transitive submodel for _Z.}f + " Qf#.exis:ts".

-10-
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