On the existence of Cohen extensions and \sum_{3}^{1} predicates I

By Yutaka YASUDA*

In the present paper, we shall consider only Cohen extensions that do not use notions of forcing which are proper classes in a given model. From now on, according to Takahashi [18], this kind of Cohen extensions we will call Cohenian extensions.

Let \mathcal{L} be the first-order language with the equality symbol "=" and the membership relation symbol " \in ", but without other non-logical symbols. We use \overline{ZF} for the Zelmelo-Fraenkel axiom system (extensionality, regularity, infinity, union, replacement and power set) that is formulated in \mathcal{L} , and \overline{ZFC} for \overline{ZF} plus the axiom of choice formulated in \mathcal{L} .

Suppose that Mis a countable standard transitive model for \overline{ZF} . For each set m of M, we choose a constant symbol m called the name of m. It is understood that different names are chosen for different sets. The language obtained from $\mathcal L$ by adding all names of sets in M is denoted by $\mathcal L_{mr}$.

We shall consider the following problem: Let φ be a sentence of f Then can we find a Cohenian extension of f that satisfies φ ?

^{*)} The auther is in Dr. M. Takahashi's debt for several useful suggestions. Also he gave me that Solovay obtained a simple proof of Takahashi's theorem, but I could not know his proof.

Since there is a sentence of $\int_{\mathbb{R}}$ that is not true in arbitrary structure for $\int_{\mathbb{R}}$, some restriction on φ is necessary in order to answer our problem. Now let us consider only φ for which there is a countable standard transitive model \Re for $\mathbb{Z}F$ that is an extension of \mathbb{M} having the same ordinals as \mathbb{M} , and that satisfies φ .

Now let us also suppose that M is one of Easton's model([1]) that satisfies the statement: for every regular cardinal No, 2 No, 2 No, 2 Insen[3] constructs a countable standard trasitive model M that is an extension of M having the same ordinals as M, and that satisfies CCH(the generalized continuum hypothesis). Jensen's construction of his model M uses a notion of forcing that is a proper class of M. We can not construct his model M using a notion of forcing which is a set of M, for, in arbitrary Cohenian extension, the collapsed cardinals constitute only a set of the Cohenian extension(Cf. Jech[2]). Thus answer to our problem is still negative.

Lévy [5] shows that $\underline{\text{GCH}}$ is a $\frac{\mathbb{Z}F}{2}$ sentence in his hierarchy of set theoretic formulas. This suggests that g must be restricted to either $\sum \frac{\mathbb{Z}F}{1}$ or $\frac{\mathbb{Z}F}{1}$ sentence of f_{m} .

Let 9 be $\prod \frac{ZF}{1}$ sentence of $\int_{\mathbf{M}}$ such that there is a standard transitive extension \mathbf{M} of \mathbf{M} that satisfies \mathbf{G} . Then we have that \mathbf{M} also satisfies \mathbf{G} , for the $\prod \frac{ZF}{1}$ sentences of $\int_{\mathbf{M}}$ are preserved between \mathbf{M} and \mathbf{M} . Thus \mathbf{G} is satisfied in the trivial Cohenian extension \mathbf{M} of \mathbf{M} (use, as a notion of forcing, a linearly ordered structure in \mathbf{M}). This give us an affirmative answer to our problem when \mathbf{G} is a $\prod \frac{ZF}{1}$ sentence of $\int_{\mathbf{M}}$.

Takahashi [13] gives the following answer to our problem for the case of $\sum \frac{ZF}{1}$ sentences of \mathcal{L}_{mr} :

THEOREM (Takahashi [13]). Let m and n be countable standard transitive models for ZFC and assume that n is an extension of m having the same ordinals as m. If q is a $\sum_{i=1}^{ZF}$ sentence of \int_{m} that is true in n, then there exists a Cohenian extension m[G] of m that satisfies q.

Takahashi's proof of his theorem uses a notion of forcing whose conditions are elements of the Lindenbaum algebra of an infinitaly propositional logic.

We shall show that Takahash's theorem may be proved with a very simple notion of forcing. Since in order to do forcing over \mathbf{m} we need only to be able to code the forcing language and to define the forcing relation in \mathbf{m} , and these do not need the axiom of choice (Cf. Jensen [4]), our proof will improve Takahashi's theorem such, that the theorem applies to models \mathbf{m} and \mathbf{m} that do not satisfy the axiom of choice. Also, we shall apply Takahashi's theorem to some \sum_{3}^{1} predicates. We will present more applications in a following paper "II".

We assume that the readers are familiar with the notions of first-order languages, formal system of Zermero-Fraenkel set theory in such a language, models for such a system and the analytical hierarchy, and the theory of forcing. The book of Shoenfield[8] provides one of the best accounts of these notions and their theories. For the theory of forcing, the readers should consult the excellent papers of Shenfield[9] and Solovay[12,§1].

Our notations and terminologies are those of Shoenfield [9,10] and Solovay [12, §1], but with the following differences: We use the symbol "≡" for logical equivalence, and small Greek letters "d", " β " and " γ " denote reals which are totall functions from ω into ω , but letter " σ " is a special variable for ordinals.

1. Shoenfield Absoluteness Theorem. Let us begin with a theorem which is a model theoretic version of well known Shenfield absoluteness theorem ([8]). This is considerably important in our further work.

Let M and M be standard transitive models for $\overline{\mathit{ZF}}$ and assume that R is an extension of M having the same countable ordinals as M. Then we have

THEOREM 1. The Σ_2^1 and Π_2^1 sentences of f are absolute between m and n

Proof. Shoenfield[8] shows that if φ is a \sum_{2}^{1} sentence of \mathcal{L}_{wc} then there is a $\Lambda = \frac{ZF}{1}$ formula $\mathcal{H}(\sigma)$ having only one free variable σ and the same names as 9 such that

$$\mathfrak{P} \equiv \exists \sigma < \omega \ \mathcal{L}(\sigma)$$

 $\Im \equiv \exists \, \sigma < \omega \, \mathcal{L}(\sigma)$ By (*), the absoluteness of the $\Delta \frac{ZF}{I}$ sentences(Cf. Karp[5]) and the hypothesis of the theorem,

$$m \models g \equiv m \models \exists \sigma < \omega_1 \lambda(\sigma)$$

$$\equiv \exists \sigma < \omega_1^m [m \models \lambda(\sigma)]$$

$$\equiv \exists \sigma < \omega_1^m [n \models \lambda(\sigma)]$$

$$\equiv \pi \models \exists \sigma < \omega_1 \lambda(\sigma)$$

$$=\pi \models g.$$

For a Π_2^1 sentence $\mathcal G$, consider the negation of $\mathcal G$ which is Σ_2^1 . C.Q.F.D.

2. Main Theorem. Now we turn to our main theorem which is a slight improvement of Takahashi's theorem.

Let M and M be countable standard transitive models for \underline{ZF} and assume that M is an extension of M having the same ordinals as M.

THEOREM 2. If φ is a $\sum \frac{ZF}{1}$ sentence of $\int_{\mathfrak{M}}$ having only names $\underline{c}_1, \dots, \underline{c}_n$, then there exists a Cohenian extension $\mathfrak{M}[G]$ of \mathfrak{M} that satisfies φ .

<u>Proof</u>. Without lseing generality, we may assme that 9 has only one name c.

Let $\chi(x,y)$ be a Δ_0 formula of \int having only two free variables x and y such that

$$\varphi \equiv \exists x \, \chi(x,\underline{c})$$

is provable in \overline{ZF} . Since $\mathfrak G$ is true in $\mathfrak N$, there is a set s of $\mathfrak N$ such that $\mathcal N(x,y)$ is satisfied in $\mathfrak N$ when x and y are interpleted by s and c respectively. If s is already in $\mathfrak M$, then our theorem is trivial. Therefore we may assume that s is not in $\mathfrak M$.

Now let us consider two partially ordered structures

$$C_{c} = (\mathbb{H}_{\mathcal{X}_{0}}(\omega, \mathbb{T}C(c \cup \omega)), \subseteq)$$

and

$$C_{s} = (H_{\mathcal{H}_{O}}(\omega, TC(s)), \underline{C}).$$

Then C_c and C_s are notions of forcing which are sets in Mand N respectively. Now let G_c and G_s be a N-generic filter on C_c and a N[G_c]-generic filter on C_s respectively. Notice that G_c is also N-generic filter on C_c . Thus there is a bijection G_c from G_c onto G_c and N[G_c]. Let G_c be a bijection from G_c onto G_c in N[G_c] and N[G_c]. Let G_c be a bijection from G_c onto G_c in N[G_c , G_c] such that for every natural number i,

$$g(2i) = g_{c}(i)$$

Consider the binary relation \boldsymbol{R}_g on ω defined as follows

$$\mathbb{R}_{g} = \left\{ (\mathtt{i},\mathtt{j}) \in \omega \times \omega : g(\mathtt{i}) \in g(\mathtt{j}) \right\}.$$

Then g is an isomorphism between two structures (ω, R_g) and $(TC(c \cup \omega) \cup TC(s), \in)$. Let c^* and s^* be two natural numbers such that

$$g(c^*) = c$$

and

$$g(s^*) = s$$

Since $\chi(x,y)$ is a Δ_0 formula of \mathcal{L} , and $(TC(c \cup \omega) \cup TC(s), \in)$ is a transitive substructure of χ ,

$$(TC(c \cup \omega) \cup TC(s), \in) \models \chi(x,y)[s,c],$$

and thus

$$(\omega, R_g) \models \chi(x,y)[s*,c*].$$

Let $\psi_0(x,y)$ be an arithmetical predicate having only two free variables x and y, without names, which says that x and y are reals

such that x and y are the codes of binary relations on ω , and for all natural numbers i and j

(*)
$$x(\langle 2i, 2j \rangle) = 0 \equiv y(\langle 2i, 2j \rangle) = 0$$

and

$$y() = 1&y(<2i+1,j>) = 1.$$

Let $\psi_1(x)$ be a \prod_1^1 predicate having only one free variable x, without names, which says that x is a real that is the code of a well-founded binary relation on ω , and for all natural numbers j and k

$$\forall i(x(\langle i,j \rangle) = 0 \equiv x(\langle i,k \rangle) = 0) \rightarrow j = k.$$

Finally let $\psi_2(x)$ be an arithmetical predicate having only one free variable x, without names, that is the logical conjunction of a predicate which says that x is a real and the predicate obtained from the formula $\chi(x, y)$ by replacing x with \underline{s}^* , y with \underline{c}^* , u \in v with $\underline{x}(\langle i,j \rangle) = 0$, $\forall u$ with $\forall i$ and $\exists u$ with $\exists i$. Then

$$\exists x(\psi_0(x,y) \& \psi_1(x) \& \psi_2(x))$$

is a \sum_{2}^{1} predicate of $\sum_{\mathbf{w}}$ having only one free real variable y and two names $\underline{\mathbf{c}}^*$ and $\underline{\mathbf{s}}^*$, and we express this predicate as $\psi(\mathbf{y})$ for simplicity.

Consider the binary relation S_{g_c} defined as follows

$$\mathbf{S}_{\mathbf{g}_{\mathbf{c}}} = \left\{ (2\mathbf{i}, 2\mathbf{j}) \in \boldsymbol{\omega} \times \boldsymbol{\omega} : \mathbf{g}_{\mathbf{c}}(\mathbf{i}) \in \tilde{\mathbf{g}}_{\mathbf{c}}(\mathbf{j}) \right\}$$

which is in $\mathfrak{M}[G_{c}]$ and $\mathfrak{N}[G_{c}]$.

Let α and β be the codes of R_g and S_{g_c} respectively. Notice β is in $M[G_c]$, so in $M[G_c]$ and $M[G_c,G_s]$. Since R_g is a well-founded binary relation on ω such that for all natural numbers i, j and k

$$(2i,2j) \in R_g \equiv (2i,2j) \in S_{g_c}$$

and

$$\begin{array}{l} (\mathtt{i},\mathtt{2j+1}) \notin \mathtt{S}_{\mathtt{g}_{\mathbf{c}}} \equiv \ (\mathtt{2i+1},\mathtt{j}) \notin \mathtt{S}_{\mathtt{g}_{\mathbf{c}}} \\ \forall \mathtt{n}((\mathtt{n},\mathtt{j}) \in \mathtt{R}_{\mathtt{g}} \equiv \ (\mathtt{n},\mathtt{k}) \in \mathtt{R}_{\mathtt{g}}) \to \mathtt{j} = \mathtt{k}, \end{array}$$

and $\psi_2(\alpha)$ says that $\chi(x,y)$ is satisfied in (ω,R_g) when x and y interpreted by s* and c* respectively, we have

$$\mathcal{M}[G_{c},G_{s}] \models \psi_{0}(x,y) \& \psi_{1}(x) \& \psi_{2}(x) [\alpha, \beta].$$

thus

$$\mathfrak{M}[G_{c},G_{s}] \models \psi(y)[\beta].$$

Now observe that $\mathfrak{M}[\mathbb{G}_{\mathbb{C}}]$ is a submodel of $\mathfrak{M}[\mathbb{G}_{\mathbb{C}},\mathbb{G}_{\mathbb{S}}]$ having the same countable ordinals as $\mathfrak{M}[\mathbb{G}_{\mathbb{C}},\mathbb{G}_{\mathbb{S}}]$, for, since the notions of forcing $(\mathbb{H}_{\mathcal{N}_{\mathbb{C}}}(\omega,\mathrm{TC}(\mathtt{c}\cup\omega)),\subseteq)$ and $(\mathbb{H}_{\mathcal{N}_{\mathbb{C}}}(\omega,\mathrm{TC}(\mathtt{s})),\subseteq)$ satisfy the $\mathcal{N}_{\mathbb{C}}$ -chain condition in \mathbb{M} and \mathbb{M} respectively, the cardinals, so the countable ordinals, are preserved between the two models $\mathfrak{M}[\mathbb{G}_{\mathbb{C}}]$ and $\mathfrak{M}[\mathbb{G}_{\mathbb{C}},\mathbb{G}_{\mathbb{S}}]$. By theorem 1, the Σ_2^1 predicate $\psi(y)$ is also satisfied in $\mathfrak{M}[\mathbb{G}_{\mathbb{C}}]$ when y is interpreted by β . Let γ be a real in $\mathfrak{M}[\mathbb{G}_{\mathbb{C}}]$ such that

$$m[G_c] \models \psi_0(x,y) \& \psi_1(x) \& \psi_2(x) [7, 3].$$

Consider the binary relation $R_{\pmb{\gamma}}$ defined as follows

$$\mathbb{R}_{\gamma} = \{ (i,j) \in \omega \times \omega : \gamma(\langle i,j \rangle) = 0 \}.$$

Then $(\omega, \mathbb{R}$) is a well-founded and extensional structure such that

$$(\omega, R_{\gamma}) \models \chi(x,y)[s^*,c^*].$$

By Mostowski Collapsing Theorem ([7]), there are unique transitive set u and unique isomorphism π from (ω, \mathbb{R}_2) onto (u, \in) in $M[\mathbb{G}_c]$. Thus

$$(u, \in) \models \Lambda(x,y)[\pi(s^*), \pi(c^*)].$$

By (*) S is a subset of R $_{\gamma}$, and hence the inverse function of $_{\rm g}$ is the restriction of π to the set of even natural numbers. Since c* is a even natural number,

$$\pi(c^*) = g_c^{-1}(c^*) = g^{-1}(c^*) = c.$$

Notice that (u, \in) is a substructure of M[G_c], and $\chi(x,y)$ is a Δ_0 formula of f. Therefore we have

$$\mathfrak{m}[G] \models \chi(x,y)[\pi(s^*),c],$$

so

C.Q.F.D.

3. Application. Now we shall give some applications of our theorem 2 that are concerned with the analytical hierarchy.

Let \mathfrak{M} and \mathfrak{N} be countable transitive models for \underline{ZF} + "there existe an inaccessible cardinal" and assume that \mathfrak{N} is an extension of \mathfrak{M} having the same ordinals. Let $\exists \beta g(\underline{\alpha}, \beta)$ be a \sum_3^1 sentence with one name $\underline{\alpha}$ for a real in \mathfrak{M} .

THEOREM 3. If the predicate $\exists \beta g(\alpha, \beta)$ is satisfied in \mathbb{N} , then there exists a Cohemian extension MCG which has a standard transitive submodel for ZF + $\exists \beta g(\alpha, \beta)$.

Proof. Let σ be an inaccessible cardinal in $\mathbb N$ and $\mathbb N'(\sigma)$ the set of sets in $\mathbb N$ with ranks less than $\mathbb C$. Let $\psi(x,y,\underline{\alpha})$ be the $\Delta \frac{\mathbb ZF}{1}$ formula " (x,ξ) is a transitive model for $\mathbb ZF + \mathfrak G(\underline{\alpha},y)$ ". Then $\psi(x,y,\underline{\alpha})$ is satisfied in $\mathbb N$ when x and y are intrepleted by $\mathbb N'(\sigma)$ and some real in $\mathbb N'(\sigma)$ respectively. Since $\exists x \exists y \psi(x,y,\underline{\alpha})$ is a $\sum \frac{\mathbb ZF}{1}$ formula, by our theorem 2 there exists a Cohenian extension $\mathbb N(\mathbb G)$ of $\mathbb N$ in which this formula is true. This means that there is a transitive standard submodel of $\mathbb N(\mathbb G)$ in which $\exists \beta \mathcal G(\underline{\alpha},\beta)$ is true. C.Q.F.D.

The technique in the proof of theorem 3 has some interest and many applications, and we present here one more application.

Let M and M be standard transitive models for \overline{ZF} having the same ordinals and assume that M satisfies \underline{MC} (there exists a mesurable crdinal). Let $P(\alpha,\beta)$ be a \prod_{2}^{1} predicate which says that $\beta = \alpha^{\#}(Cf)$. Solovay [11]). Since $\exists \beta P(\alpha,\beta)$ is provable in $\overline{ZF} + \underline{MC}$, for each real α in M, $\exists \beta P(\alpha,\beta)$ is true in M. Let $\psi(x,y,\alpha)$ be a \sum_{1}^{2F} formula which says that (x,ϵ) is a transitive model of $\overline{ZF} + P(\alpha,y)$. Then applying a similar argument in the proof of theorem 3 to this formula, we have

THEOREM 4. There exists a Cohemian extension M[G] of MC which has a standard transitive submodel for ZF + "at exists".

REFERENCES

- [1] EASTON, W. B., Powers of regular cardinals, Ann. of Math. Logic, 1(1970), 139-178.
- [2] JECH, T. J., Lectures in set theory with particular emphasis on the method of forcing, Lecture Notes in Math., 217, Springer -Verlag, Berlin-Heidelberg-New york, 1971, 137p.
- [3] JECH, T. J., Measurable cardinals and the GCH, Axiomatic Set Theory, Proc. of Sympo. in Pur Math., Vol. XIII, Part 2, Amer. Math. Soc., Providence, R.I., 1974, 175-178.
- [4] JENSEN, R. B., Concrete models of set theory, <u>Set, Models</u>
 and <u>Recursion Theory</u>, North-Holland Pub. Co., Amsterdam,
 1967, 44-47.
- [5] KARP, C., A proof of the relative consistency of the continuum hypothsis, Set Models and Recurtion Theory, North-Holland Pub. Co., Amsterdam, 1967, 1-28.
- [6] LEVY, A., A hierarchy of formulas in set theory, Mem. Amer.
 Nath. Soc., No. 57, Amer. Nath. Soc., Providence, R.I., 1965,
 74p.
- [7] MOSTOWSKI, A., An undecidble arithmetical staement, <u>Fun. Nath.</u> XXXVI(1949), 149-164.
- [8] SHOENFIELD, J. R., The problem of predicativity, Essay on the Foundations of Mathematics, Magnes Press, Jerusalm, 1961, 132-139.
- [9] SHOENFIELD, J. R., <u>Nathematical Logic</u>, Addison-Wesley, Pub. Co., Reading, Mass., 1967, 344p.

- [10] SHOENFIELD, J. R., Unramified forcing, Axiomatic Set Theory, Proc. Sympo. Pure Nath. XIII, Part 1, Amer. Nath. Soc., Prrovidence, R.I., 1971, 357-381.
- [11] SOLOVAY, R. M., A non-constructible Δ_3^1 set of integers, <u>Trans</u>

 <u>Amer. Math. Soc.</u>, 127(1967), 58-75.
- [12] SOLOVAY, R. M., A model of set theory in which every set of reals is Lebesgue measurable, Ann. Nath., 97(1970) 1-56.
- [13] TAKAHASHI, M., On the existence of Cohen extensions, <u>Comment.</u>

 <u>Math. Univ.</u> St. <u>Paul</u>, XX(1972),147-159.

Yutaka YASUDA
Institute of Education
Tokai University
Hiratsuka 254
Japan