Alexander Polynomials of Two-Bridge Links

Taizo KANENOBU
Kobe University

Hartley [H] gave a necessary condition for a polynomial to be the Alexander polynomial of a two-bridge knot or the reduced Alexander polynomial of a two-bridge link. He showed how the coefficients of the polynomial may be read straight from the extended diagram, which is derived from Schubert's normal form of a two-bridge knot or link, and showed the following theorem: If $\Delta(t) = \sum_{i=0}^{n} (-1)^{i} a_{i} t^{i}, \text{ where } a_{i} > 0, \text{ is the Alexander polynomial of a two-bridge knot or the reduced Alexander polynomial of a two-bridge link, then for some integer s, <math>a_{0} < a_{1} < \dots < a_{s} = a_{s+1} = \dots = a_{n-s} > \dots > a_{n}.$ On the other hand, using surgery techniques, Bailey [B] presented an algorithm for calculating the Alexander polynomial of a two-bridge link from Conway's diagram. As a corollary to this he proved a conjecture of Kidwell about the linking complexity or geometric intersection numbers of a link in the special case of two-bridge links.

The main results of this paper are Theorems 1 and 3, the former

provides another algorithm for calculating the Alexander polynomial of a two-bridge link putting every two-bridge link in the special form of Conway's diagram. The latter gives some necessary conditions for a polynomial to be the Alexander polynomial of a two-brdge link. These conditions are analogous to Hartley's theorem above. Theorem 2 and Corollary 1 also give some properties of the Alexander polynomial of a two-bridge link, including the Torres condition [T]. Corollary 2 is a conjecture of Kidwell in the case of two-bridge links.

In Section 2, we show some lemmas for Theorems 1 and 2 using Fox's free differential calculus. In Section 3, we summarize some properties of two-bridge links. In Section 4, we state the abovementioned results. In Section 5, we prove Theorem 3.

1. Preliminaries

In this paper, a link L will mean a piecewise linear embedding of two oriented circles K_1 and K_2 in the 3-sphere S^3 . Two links L and L' are called equivalent, if there is an orientation preserving autohomeomorphism of S^3 , which maps L onto L'. The Alexander polynomial $\Delta(x,y)$ of L is an element of the polynomial ring $Z\left[x,x^{-1},y,y^{-1}\right]=\Lambda$, and is determined only up to multiplication by a unit $\pm x^i y^j$. Let $G=\pi_1(S^3-L)$, and let G' be its commutator subgroup. Then $\Lambda=Z\left[G/G'\right]$; the basis $\{x,y\}$ of G/G' is always taken to be represented by the meridians of K_1 and K_2 respectively. We will calculate the Alexander polynomial of a link by using Fox's free differential calculus,

see [F], [T].

Throughout this paper, we will often abbreviate a polynomial f(x,y) in \bigwedge to f and will use the following notation;

$$F_{n}(x,y) = \begin{cases} \sum_{i=0}^{n-1} (xy)^{i} & \text{if } n > 0, \\ 0 & \text{if } n = 0, \\ -\sum_{i=n}^{-1} (xy)^{i} & \text{if } n < 0. \end{cases}$$

In the figures of this paper we will use a tangle [C], which is a portion of the link diagram containing two arcs. An integral tangle, which is represented by a circle labeled "i" or "-i", where i is a non-negative integer, is a 2-braid with i or -i crossings, in the manner indicated in Fig. 1.

Fig. 1

2. Lemmas

Lemma 1. Let L(q,r,s,t) be a link as shown in Fig. 2, where T is any tangle. Let $\Delta^{(q,r,s,t)}$ be the Alexander polynomial of L(q,r,s,t). If we set $\Delta = \Delta^{(q,r,s,t)}$, $\Delta_0 = \Delta^{(q,r,0,0)}$ and $\Delta_{00} = \Delta^{(0,0,0,0)}$, then

(2.1)
$$\Delta = \left\{ s(x-1)(y-1)F_t + 1 \right\} \Delta_0 + \frac{F_t}{F_r} (xy)^r \Delta_0 - \Delta_{00},$$

where $r \neq 0$.

Fig. 2

Proof. We have a presentation of $\pi_1(S^3 - L(q,r,s,t))$ as follows:

generators;
$$a_1$$
, a_2 , a_3 , b_1 , b_2 , b_3 , b_4 , b_5 , b_6 , b_7 , c_i (7 \leq i \leq n+1),

relations; (i) $b_3 = (b_1^{-1}b_2)^q b_1 (b_2^{-1}b_1)^q$,

(ii) $b_4 = (b_1^{-1}b_2)^q b_2 (b_2^{-1}b_1)^q$,

(iii) $a_2 = (b_3a_1)^r a_1 (a_1^{-1}b_3^{-1})^r$,

(iv) $b_5 = (b_3a_1)^r b_3 (a_1^{-1}b_3^{-1})^r$,

(v) $b_6 = (b_5^{-1}b_4)^s b_5 (b_4^{-1}b_5)^s$,

(vi) $b_7 = (b_5^{-1}b_4)^s b_4 (b_4^{-1}b_5)^s$,

(vii) $a_3 = (b_6a_2)^t a_2 (a_2^{-1}b_6^{-1})^t$,

(viii) $b_7 = (b_6a_2)^t b_6 (a_2^{-1}b_6^{-1})^t$,

(ix_j) $s_j = 1$ (5 \leq j \leq n),

where c_i and $s_j = 1$ are obtained in the tangle T, so s_j is a word in a_1 , a_2 , b_1 , b_2 , c_7 , ..., c_{n+1} .

(i) and (ii), (iii) and (iv), (v) and (vi), (vii) and (viii) imply

(ii')
$$b_4 = b_3 b_1^{-1} b_2$$
,
(iv') $b_5 = b_3 a_1 a_2^{-1}$,
(vi') $b_7 = b_6 b_5^{-1} b_4$,
(viii') $b_7 = b_6 a_2 a_3^{-1}$,

respectively, and we eliminate (ii), (iv), (vi) and (viii).

Using (vi') and (viii'), we have

$$(x) b_5^{-1} b_4 = a_2 a_3^{-1}$$

and we eliminate b_7 . Substituting (iv') and (x) in (v), we have

$$(v')$$
 $b_6 = (a_2 a_3^{-1})^s b_3 a_1 a_2^{-1} (a_3 a_2^{-1})^s$

and we eliminate (v). Substituting (v') in (vii), we have $R_1 = 1$, where

$$R_{1} = \left\{ (a_{2}a_{3}^{-1})^{s}b_{3}a_{1}(a_{2}^{-1}a_{3})^{s} \right\}^{t}a_{2}\left\{ (a_{3}^{-1}a_{2})^{s}a_{1}^{-1}b_{3}^{-1}(a_{3}a_{2}^{-1})^{s} \right\}^{t}a_{3}^{-1}$$

and we eliminate b_6 . Substituting (ii') and (iv') in (x), we have $R_3 = 1$, where

$$R_3 = a_3 a_1^{-1} b_1^{-1} b_2$$

and we eliminate b₄ and b₅.

Hence $\tau_{1}(s^{3} - L(q,r,s,t))$ is presented by

generators; a₁, a₂, a₃, b₁, b₂, b₃, c₇, ..., c_{n+1},

relators; R_1 , R_2 , R_3 , R_4 , S_5 , ..., S_n ,

where

$$R_2 = (b_3 a_1)^r a_1 (a_1^{-1} b_3^{-1})^r a_2^{-1}$$

and

$$R_4 = (b_1^{-1}b_2)^q b_1 (b_2^{-1}b_1)^q b_3^{-1},$$

which come from (iii) and (i) respectively.

From this presentation we have the Alexander matrix of L(q,r,s,t) as follows:

where $f = s(x-1)(y-1)F_t + (xy)^t$ and $g = -s(x-1)(y-1)F_t - 1$. Add the third column to the second column, the first column multiplied by -y to the fourth column, and the fifth column to the sixth column, and delete the last column. Then we have an n x n matrix as follows:

n x n matrix as follows:

$$\begin{bmatrix}
(1-x)F_t & (xy-1)F_t & g & 0 & 0 & 0 \\
(1-x)F_r & -1 & 0 & (xy)^r & 0 & 0 \\
0 & 1 & 1 & -1 & y^{-1} & 0 \\
-1 & 0 & 0 & y & q(y^{-1}-1) & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & A_1 & A_1 & A_2 & A_3 & A_3 + A_4 & B
\end{bmatrix}$$

where 0 is a zero column vector of dimnsion n-4, A_{i} is the

column vector
$$\begin{bmatrix} \alpha_{5i} \\ \vdots \\ \alpha_{ni} \end{bmatrix}$$
 and B is the matrix $\begin{bmatrix} \beta_{57} & \cdots & \beta_{5n} \\ \vdots & & \vdots \\ \beta_{n7} & \cdots & \beta_{nn} \end{bmatrix}$.

Let $\Phi^{(q,r,s,t)}$ be the determinant of (2.2). Then

(2.3)
$$\underline{\underline{\mathfrak{P}}}^{(q,r,s,t)} = (z-1)\Delta^{(q,r,s,t)},$$

where z is x or y according as c_{n+1} is represented by the

meridian of K_1 or K_2 [T, p.61]. Let C be the (n-2) x (n-2) matrix obtained from (2.2) by deleting the first and second row, and first and second column. The expansion of (2.2) according to the first row gives us

(2.4)
$$\underline{\Phi}^{(q,r,s,t)} = \{s(x-1)(y-1)F_t + 1\}\underline{\Phi}^{(q,r,0,0)} + \varphi^{(q,r,s,t)}.$$

Here $\varphi^{(q,r,s,t)} = (1-x)F_t \begin{vmatrix} -1 & 0 & (xy)^r & 0^T \\ 1 & & & \\ & & 1 & & \\ & & & - (xy-1)F_t \begin{vmatrix} (1-x)F_r & 0 & (xy)^r & 0^T \end{vmatrix},$

where $oldsymbol{0}^{\mathrm{T}}$ is a zero row vector of dimension n-4. Since

$$\begin{vmatrix}
-1 & 0 & (xy)^{T} & 0^{T} \\
1 & & & \\
0 & & C \\
A_{1} & & 0
\end{vmatrix} = \begin{vmatrix}
-1 & 0 & (xy)^{T} & 0^{T} \\
0 & & & \\
0 & & C
\end{vmatrix}, \text{ we have}$$

On the other hand
$$\mathbf{\Xi}^{(q,r,0,0)} = - \begin{vmatrix} (1-x)F_r & -1 & (xy)^r & 0^T \end{vmatrix}$$
.

Since L(q,0,0,0) is equivalent to L(0,0,0,0), $\mathbf{\Phi}^{(q,0,0,0)} = \mathbf{\Phi}^{(0,0,0,0)}$ by (2.3), so we have

$$\underline{\Phi}^{(q,r,0,0)} - \underline{\Phi}^{(0,0,0,0)} = F_r \begin{vmatrix} x-1 & 0 & 1-xy & 0^T \\ 0 & & & \\ -1 & & C & & \\ 0 & & & & \end{vmatrix}.$$

Since it is easily seen that

$$\begin{bmatrix} \mathbf{x}-\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0}^{\mathbf{T}} \\ \mathbf{0} \\ \mathbf{x}\mathbf{y}-\mathbf{1} & \mathbf{C} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{x}-\mathbf{1} & \mathbf{0} & \mathbf{1}-\mathbf{x}\mathbf{y} & \mathbf{0}^{\mathbf{T}} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

we have $\mathcal{G}^{(q,r,s,t)} = (xy)^r \frac{F_t}{F_r} (\mathbf{\Phi}^{(q,r,0,0)} - \mathbf{\Phi}^{(0,0,0,0)})$ if $r \neq 0$.

Thus it follows from (2.4) and (2.3), we obtain (2.1). \Box

Lemma 2. Besides the notation in Lemma 1, let $\Delta_0' = \Delta^{(q,r,0,t)}$ and $\Delta^{(t_0)} = \Delta^{(q,r,s,t_0)}$. Then

(2.5)
$$\Delta = s(x-1)(y-1)F_t\Delta_0 + \Delta_0$$
;

(2.6)
$$\Delta^{(t)} = F_{+}\Delta^{(1)} - xyF_{+-1}\Delta_{0};$$

(2.7)
$$\Delta^{(t)} + xy\Delta^{(t-2)} = (1+xy)\Delta^{(t-1)}$$
.

Remarks. (1) In the above notation $\Delta^{(t)} = \Delta$ and $\Delta^{(0)} = \Delta_0$.

(2) (2.7) is a special case of Conway's result [C, p.338], see also [K, p.462].

Proof. Putting s = 0 in (2.1) we have

$$\Delta_{O}^{\prime} = \Delta_{O} + \frac{F_{t}}{F_{r}} (xy)^{r} (\Delta_{O} - \Delta_{OO}).$$

Combining this formula with (2.1) we obtain (2.5).

Next, from (2.1) we have

$$\Delta^{(t)} - \Delta_{O} = F_{t} \{ s(x-1)(y-1)\Delta_{O} + (xy)^{r} \frac{1}{F_{r}} (\Delta_{O} - \Delta_{OO}) \}$$

$$= F_{t} (\Delta^{(1)} - \Delta_{O}).$$

Since $1 - F_t = -xyF_{t-1}$, we obtain (2.6).

Finally, using (2.6) we have

$$\Delta^{(t)} - \Delta^{(t-1)} = (F_t - F_{t-1})\Delta^{(1)} - xy(F_{t-1} - F_{t-2})\Delta_0$$
$$= (xy)^{t-1}(\Delta^{(1)} - \Delta_0).$$

Hence

$$\Delta^{(t)} - \Delta^{(t-1)} = xy(\Delta^{(t-1)} - \Delta^{(t-2)}),$$

and (2.7) follows.

3. Two-bridge links

According to Conway's presentation [C], every two-bridge link can be put in the form as shown in Fig. 3. It will be denoted by $C(a_1,a_2,\ldots,a_n)$ including the indicated orientation of each component. The diagram is slightly different in the cases n=2k and n=2k+1, as indicated in Fig. 3. From this projection we can see that a two-bridge link is a link with two components each of which is a trivial knot. Moreover a two-bridge link is interchangeable, that is, there is an isotopy of S^3 which interchanges the two components. This follows immediately from Schubert's normal form [Sc], or Bailey [B, p.48] also proves this using Conway's diagram.

Let α (>0) and β be the coprime integers computed from the continued fraction:

$$\frac{\alpha_0}{\beta} = a_1 + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

Then α is even and $0<|\beta|<\alpha$. The two-fold cover of S^3 branched over this link is the lens space $L(\alpha,\beta)$, see [C], [S]. This link is equivalent to the link with Schubert's normal form (α,β) , denoted by $S(\alpha,\beta)$, endowed with suitable orientations. According to Schubert [Sc, p.144], $S(\alpha,\beta)$ and $S(\alpha',\beta')$ are equivalent if and only if $\alpha=\alpha'$ and $\beta^{\pm 1}\equiv\beta'$ (mod 2α). Furthermore, if $\beta'\equiv\beta+\alpha'$ (mod $2\alpha'$) or $\beta\beta'\equiv\alpha+1$ (mod $2\alpha'$), then $S(\alpha,\beta)$ differs from $S(\alpha',\beta')$ only by the orientation of one of the components (cf. [S, p.7]).

We can obtain easily another continued fraction:

$$\frac{\alpha}{\beta} = 2b_1 + \frac{1}{2b_2} + \dots + \frac{1}{2b_m},$$

where m is odd. $C(2b_1, 2b_2, ..., 2b_m)$ is then equivalent to $C(a_1, a_2, ..., a_n)$ and will be denoted by $D(b_1, b_2, ..., b_m)$. In the following we will consider every two-bridge link putting in this form (cf. [S, p.13]).

4. Main theorems

From Lemma 1, we have

Theorem 1. Let $L_0 = D(0)$ and for $n \ge 1$ let $L_n = D(p_1, q_1, q_2, \dots, p_{n-1}, q_{n-1}, p_n)$, where $\prod_{i=1}^n p_i \prod_{j=1}^{n-1} q_j \ne 0$. Let $\Delta_n(x, y)$ be the polynomial inductively defined as follows:

$$\Delta_{0} = 0;$$

$$(4.1) \quad \Delta_{1} = F_{p_{1}};$$

$$\Delta_{n} = \{q_{n-1}(x-1)(y-1)F_{p_{n}} + 1\}\Delta_{n-1} + (xy)^{p_{n-1}}\frac{F_{p_{n}}}{F_{p_{n-1}}}(\Delta_{n-1} - \Delta_{n-2}),$$
for $n \geq 2$.

Then $\Delta_n(x,y)$ is the Alexander polynomial of $L_{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{1$

In the following, by the Alexander polynomial of a two-bridge link we mean the polynomial defined in Theorem 1 and we will use the following notation besides that in Theorem 1. Let $\Delta_n^{(p)}$ be the Alexander polynomial of $D(p_1,q_1,p_2,q_2,\ldots,p_{n-1},q_{n-1},p)$; thus $\Delta_n^{(p_n)} = \Delta_n$ and $\Delta_n^{(0)} = \Delta_{n-1}$. Let $I_n = \sum_{i=1}^n p_i$, that is the

linking number of L_n . Let $\hat{l}_n = \sum_{i=1}^n |p_i|$.

From Lemma 2, we have

Theorem 2.

(4.2)
$$\Delta_n = q_{n-1}(x-1)(y-1)F_{p_n}\Delta_{n-1} + \Delta_{n-1}^{(p_{n-1} + p_n)};$$

(4.3)
$$\Delta_n^{(p)} = \mathbb{F}_p \Delta_n^{(1)} - \exp \mathbb{F}_{p-1} \Delta_{n-1};$$

$$(4.4)$$
 $\Delta_n^{(p)} + xy\Delta_n^{(p-2)} = (1 + xy)\Delta_n^{(p-1)}$.

Using (4.4) or Theorem 1 we can show easily the following each formula by induction on n.

Corollary 1.

(4.5)
$$\Delta_n(x,y) = \Delta_n(y,x);$$

(4.6)
$$\Delta_{n}(x,y) \equiv F_{n}(x,y) \mod (x-1)(y-1)$$
:

(4.7)
$$\Delta_{n}(x,y) = (xy)^{\ell_{n}-1} \Delta_{n}(x^{-1},y^{-1}).$$

The fact that a two-bridge link is interchangeable assures us of (4.5). From (4.6), we have immediately

(4.8)
$$\Delta_n(x,1) = F_{\mathbf{l}_n}(x,1)$$
.

(4.7) and (4.8) constitute the Torres conditions [T] for two-bridge links.

<u>Definition 1.</u> Let f(x,y) be a polynomial in \bigwedge . If f(x,y) \neq 0, then $\deg_{x}f = (\max x - power of any term of f) minus (minimum x-power of any term of f). If <math>f(x,y) = 0$, then

 $\deg_{\mathbf{x}} \mathbf{f} = -1$. We define $\deg_{\mathbf{y}} \mathbf{f}$ in the same way.

(i)
$$\deg_{x} f = \deg_{y} f = s-r.$$

(ii) Let
$$M(f) = \begin{bmatrix} a_{sr} \dots a_{ss} \\ \vdots & \vdots \\ a_{rr} \dots a_{rs} \end{bmatrix}$$
 and $W(f) = \begin{bmatrix} a_{rr} \dots a_{rs} \\ \vdots & \vdots \\ a_{sr} \dots a_{ss} \end{bmatrix}$.

Then both M(f) and W(f) are symmetric matrices.

(iii) $a_{ij} \ge 0$ if i+j is even and $a_{ij} \le 0$ if i+j is odd.

(iv) Let
$$b_{ij} = a_{i+r,j+r}$$
. Then

$$|b_{k,0}| \le |b_{k-1,1}| \le \cdots \le |b_{k-u,u}|,$$

and
$$\begin{vmatrix} b_{k,0} \end{vmatrix} \le \begin{vmatrix} b_{k+1,1} \end{vmatrix} \le \cdots \le \begin{vmatrix} b_{k+v,v} \end{vmatrix}$$

for
$$0 \le k \le s-r$$
, where $u = \left[\frac{k}{2}\right]^*$ and $v = \left[\frac{k-s+r}{2}\right] + 1$.

Furthermore $\bigwedge^{-1}(r,s)$ denotes the set of all polynomials f(x,y) in \bigwedge such that $-f(x,y) \in \bigwedge^{+1}(r,s)$.

Note that $r_n \le 0 \le s_n$, $r_n - r_{n-1} = \frac{p_n - |p_n|}{2}$ and $s_n - s_{n-1} = \frac{p_n + |p_n|}{2}$. The proof of Theorem 3 will be given in Section 5.

^{*) []} denotes the Gaussian symbol.

Concerning the reduced Alexander polynomial of a two-bridge link, Theorem 3 yields the weaker result than that of Hartley stated in the beginning of this paper.

For the sake of Corollary 2 below, we need some preliminaries.

Definition 3. Let $L = K_1 \cup K_2$ be a link and S be a Seifert surface for K_1 with S and K_2 in general position. If $\delta_S = 2$ (genus of S) plus (the number of times K_2 intersects S), then $\delta_1 = \min_S \delta_S$ is the linking complexity of K_2 with K_1 . We define δ_2 in the same way. We call the ordered pair (δ_1, δ_2) the linking complexity of the link L.

This definition follows Bailey [B, p.45], see also [K].

Proposition 1. (Kidwell) If $\Delta(x,y)$ is the Alexander polynomial of a link L with linking complexity (δ_1, δ_2) , then $\delta_1 - 1 \ge \deg_x \Delta(x,y)$.

Proof. See [B, p.46].

Corollary 2. Let ($\emph{\textbf{f}}_1$, $\emph{\textbf{f}}_2$) be the linking complexity of \emph{L}_n . Then

the same at the same of the same of the

is making room are of their recognition of the

$$(4.9) \quad \mathbf{l}_1 = \mathbf{l}_2;$$

(4.10)
$$\deg_{\mathbf{x}} \mathbf{1}_{n}(\mathbf{x}, \mathbf{y}) + 1 = \mathbf{1}_{1} = \mathbf{1}_{n}$$

Remark. The first equality of (4.10) is Proposition 6 of [B, p.57].

Proof. (4.9) follows from interchangeability of a two-bridge link or (4.10). For (4.10), from the diagram of L_n , we see that $b_1 \leq \hat{l}_n$. By Theorem 3, $\deg_{\mathbf{x}} \Delta_n + 1 = \hat{l}_n$ and by Proposition 1, $b_1 \geq \deg_{\mathbf{x}} \Delta_n + 1$. \Box

5. Proof of Theorem 3

In this section we use the following trivial lemma without mention.

Lemma 3. Let $f \in \bigwedge^{\xi}(r,s)$ and $g \in \bigwedge^{\xi}(r-k,s+k)$ $(k \ge 0)$. Then $f + g \in \bigwedge^{\xi}(r-k,s+k)$.

Lemma 4. Let $f \in \bigwedge^{\epsilon}(r,s)$. Then

$$F_{n}f \in \begin{cases} \bigwedge^{\xi}(r, s+n-1) & \text{if } n > 0, \\ \bigwedge^{-\xi}(r+n, s-1) & \text{if } n < 0, \end{cases}$$

$$G_{n}f \in \bigwedge^{(-1)^{n-1}\xi}(r, s+n-1) & \text{if } n > 0, \end{cases}$$

where $G_n(x,y) = x^{n-1}F_n(x^{-1},y)$.

Proof. We show that $f \in \bigwedge^{+1}(r,s)$ implies $F_n f \in \bigwedge^{+1}(r,s+n-1)$ if n > 0. The other case can be proved similarly.

It is clear that F_nf satisfies the conditions (i), (ii), (iii) and the first inequality of (iv) in Definition 2. The second inequality of (iv) can be reduced to Sublemma below. \square

Sublemma. Let $f(x) = \sum_{i=0}^{n} a_i x^i$, where $a_i = a_{n-i}$ and $0 < a_0$ $\leq a_1 \leq \cdots \leq a_{\lfloor n/2 \rfloor}.$ Let $(\sum_{j=0}^{m} x^j) f(x) = \sum_{k=0}^{m+n} b_k x^k.$ Then $b_k = b_{m+n-k}$ and $0 < b_0 \leq b_1 \leq \cdots \leq b_{\lfloor (m+n)/2 \rfloor}.$

Proof. We proceed by induction on n. For n = 0, 1, the sublemma is trivial. Assume the sublemma proved for polynomials of degree < n. Write $f(x) = a_0 \sum_{i=0}^n x^i + xg(x)$, where $g(x) = \sum_{j=0}^{n-2} a_{j+1} x^j$. Let $(\sum_{j=0}^m x^j)g(x) = \sum_{i=0}^{m+n-2} c_i x^i$. Then $c_i = c_{m+n-2-i}$ and $0 < c_0 \le c_1 \le \cdots \le c_{\lfloor (m+n-2)/2 \rfloor}$ by inductive hypothesis. Thus if $(\sum_{j=0}^m x^j)f(x) = \sum_{k=0}^{m+n} b_k x^k$, it is easy to see that $b_k = b_{m+n-k}$ and $0 < b_0 \le b_1 \le \cdots \le b_{\lfloor (m+n)/2 \rfloor}$.

Lemma 5. If $\Delta_{n-1} \in \bigwedge^{-\xi}(r, s-1)$ and $\Delta_n^{(1)} \in \bigwedge^{\xi}(r, s)$, then $\Delta_n^{(p)} \in \left\{ \begin{array}{ll} \bigwedge^{\xi}(r, s+p-1) & \text{if } p > 0, \\ \bigwedge^{-\xi}(r+p, s-1) & \text{if } p < 0. \end{array} \right.$

Proof. (4.2) in Theorem 2 states that $\Delta_n^{(p)} = F_p \Delta_n^{(1)} - xyF_{p-1}\Delta_{n-1}$. The case p=1 is the hypothesis. If $p \ge 2$, then using Lemma 4, $F_p \Delta_n^{(1)} \in \bigwedge^{\epsilon}(r, s+p-1)$ and $-xyF_{p-1}\Delta_{n-1} \in \bigwedge^{\epsilon}(r+1, s+p-2)$. Thus $\Delta_n^{(p)} \in \bigwedge^{\epsilon}(r, s+p-1)$. If $p \le -1$, then $F_p \Delta_n^{(1)}$, $-xyF_{p-1}\Delta_{n-1} \in \bigwedge^{-\epsilon}(r+p, s-1)$, so $\Delta_n^{(p)} \in \bigwedge^{-\epsilon}(r+p, s-1)$. \square

Lemma 6. Let $\Delta_n^{\text{<m>}}$ be the Alexander polynomial of $D(p_1, q_1, \dots, p_{n-m}, q_{n-m}, 1, q_{n-m+1}, 1, \dots, q_{n-1}, 1)$. Then we have $(5.1) \Delta_n^{\text{<m>}} = G_{m+1} \Delta_{n-m} - xyG_m \Delta_{n-m}^{(p_{n-m}-1)} + (x-1)(y-1) \sum_{l=1}^m (q_{n-k}+1)G_k \Delta_{n-k},$

where the last term denotes zero if m = 0.

Proof. We prove (5.1) by induction on m. For m = 0, it is clear that $\Delta_n^{<0>} = \Delta_n$. Assume that (5.1) proved for m-1.

Substituting $p_{n-m+1} = 1$ in $\Delta_n^{\langle m-1 \rangle}$ we have

$$\Delta_{n}^{\langle m \rangle} = G_{m} \Delta_{n-m+1}^{(1)} - xyG_{m-1} \Delta_{n-m+1}^{(0)} + (x-1)(y-1) \sum_{k=1}^{m-1} (q_{n-k}+1)G_{k} \Delta_{n-k}.$$

By (4.2), $\Delta_{n-m+1}^{(1)} = q_{n-m}(x-1)(y-1)\Delta_{n-m} + \Delta_{n-m}^{(p_{n-m}+1)}$. Thus we have

$$\Delta_{n}^{\langle m \rangle} = G_{m} \left\{ -(x-1)(y-1) \Delta_{n-m} + \Delta_{n-m}^{(p_{n-m}+1)} \right\} - xyG_{m-1} \Delta_{n-m}$$

$$+ (x-1)(y-1) \sum_{k=1}^{m} (q_{n-k}+1)G_{k} \Delta_{n-k}.$$

By (4.4), $\Delta_{n-m}^{(p_{n-m}+1)} = (xy+1)\Delta_{n-m} - xy\Delta_{n-m}^{(p_{n-m}-1)}$. Thus we have

$$\Delta_{n}^{\langle m \rangle} = \{(x+y)G_{m} - xyG_{m-1}\}\Delta_{n-m} - xyG_{m}\Delta_{n-m}^{(p_{n-m}-1)} + (x-1)(y-1)\sum_{l=1}^{m} (q_{n-k} + 1)G_{k}\Delta_{n-k}.$$

Since $(x+y)G_m - xyG_{m-1} = G_{m+1}$, we have (5.1).

Now we are in position to prove Theorem 3. We use induction on n. For n = 1, the theorem is clear. Assume the theorem proved for Δ_k , where $1 \le k \le n-1$. Without loss of generality

we may suppose that $q_{n-1} < 0$. By Lemma 5 we have only to prove for the case $p_n = 1$. Then there exists an integer m such that:

(I)
$$1 \le m \le n-1$$
, $p_{n-m+1} = p_{n-m+2} = \dots = p_{n-1} = 1$, $p_{n-m} \ne 1$ and q_{n-m} , q_{n-m+1} , ..., $q_{n-1} < 0$,

(II)
$$1 \le m \le n-2$$
, $p_{n-m} = p_{n-m+1} = p_{n-m+2} = \dots = p_{n-1} = 1$, $q_{n-m}, q_{n-m+1}, \dots, q_{n-1} < 0$ and $q_{n-m-1} > 0$, or

(III)
$$m = n-1$$
, $p_1 = p_2 = ... = p_{n-1} = 1$, $q_1, q_2, ..., q_{n-1} < 0$.

To prove Theorem 3, it suffices to prove that $\Delta_{n-m} \in \bigwedge^{\epsilon}(r,s)$

implies $\Delta_{n} \in \Lambda^{(-1)^{m} \xi}(r, s+m)$, where by Lemma 6

$$(5.2) \Delta_{n} = G_{m+1} \Delta_{n-m} - xyG_{m} \Delta_{n-m}^{(p_{n-m}-1)} + (x-1)(y-1) \sum_{k=1}^{m} (q_{n-k}+1)G_{k} \Delta_{n-k}.$$

By Lemma 4, we have

(5.3)
$$G_{m+1} \mathcal{A}_{n-m} \in \Lambda^{(-1)^m \xi}(r, s+m).$$

By inductive hypothesis, $\Delta_{n-k} \in \bigwedge^{(-1)^{m-k}} \xi_{(r, s+m-k)}$ for $1 \le k$

 \leq m. Then by Lemma 4, $G_k \Delta_{n-k} \in \Lambda^{(-1)^{m-1}} E(r, s+m-1);$ hence we obtain

$$(5.4) (x-1)(y-1) \sum_{k=1}^{m} (q_{n-k}+1) G_k \Delta_{n-k} \begin{cases} = 0 & \text{if } q_{n-k} = -1 \text{ for any } k, \\ \in \bigwedge^{(-1)^m} \mathcal{E}_{(r, s+m)} & \text{otherwise.} \end{cases}$$

Case (I). If $p_{n-m} \neq 1$, then by inductive hypothesis,

$$\Delta_{n-m}^{(p_{n-m}-1)} \in \left\{ \begin{array}{ll} \bigwedge^{\epsilon}(r, s-1) & \text{if } p_{n-m} \ge 2, \\ \bigwedge^{\epsilon}(r-1, s) & \text{if } p_{n-m} \le -1. \end{array} \right.$$

Thus, using Lemma 4, we have

$$(5.5) \quad -xyg_{m} \Delta_{n-m}^{(p_{n-m}-1)} \in \begin{cases} \Lambda^{(-1)^{m}} \epsilon_{(r+1, s+m-1)} & \text{if } p_{n-m} \geq 2, \\ \Lambda^{(-1)^{m}} \epsilon_{(r, s+m)} & \text{if } p_{n-m} \leq -1. \end{cases}$$

Case (II). If $p_{n-m}=1$ and $q_{n-m-1}>0$, then by inductive hypothesis,

$$\Delta_{n-m}^{(p_{n-m}-1)} = \Delta_{n-m-1} \in \Lambda^{\epsilon}(r, s-1).$$

Thus, using Lemma 4, we have

(5.6)
$$-xyg_{m}^{(p_{n-m}-1)} \in \bigwedge^{(-1)^{m}} \xi_{(r+1, s+m-1)}.$$

Case (III). Since m = n-1 and $p_1 = 1$, we have

(5.7)
$$-xyG_{m}\Delta_{n-m}^{(p_{n-m}-1)} = 0.$$

From (5.2) \sim (5.7), we have $\Delta_n \in \Lambda^{(-1)^m} \xi_n$ (r, s+m). This completes the proof of Theorem 3.

APPENDIX

Alexander Polynomials of Two-Bridge Links of 10 Crossings

For every two-bridge link of 10 crossings in the table of Conway [C, p.353], we list the Alexander polynomial. Two-bridge links are presented by Conway's notation; $p_1p_2...p_n$ denotes a two-bridge link with the notation $C(p_1,p_2,...,p_n)$ in this paper. The Alexander polynomial is abbreviated in the same manner as Rolfsen's table [R, Appendix C].

10		5122	
	1		-2 1 -2 3 -2
			-2 3 -2 1 -2
73		~	1 -2
ر <i>ب</i>		442	
	1 1 -1 1		
	1 -1 1		- 2 3
	1 -1 1		- 2 5 - 2
	1		3 - 2
622		424	
		44	
	- 1 2		1 7
	-1 3 -1		-1 3 -2 4 -1
	-1 3 -1		-1 4 -2
	2 -1		3 - 1
55		1.017	
	7	4213	
	1 1 -1 1		3
	1 -1 1 -1 1		-1 2 -1 3 -3 2
	1 -1 1		2 -3 3 -1
	1		2 -1
523		1.7.03.0	
) <u>-</u>)		41212	
	1		
	2 - 2 1 2 - 3 2		1 -2 1
	1 -2 2		1 -3 3 -2 -2 3 -3 1
	1		1 -2 1

61

-3 4

4 **-**3

-2 5 -5 1

-2 1

62

23212

213112

2 -4 2 -4 7 -4 2 -4 2 -1 2 -1 2 -5 4 -1 -1 4 -5 2 -1 2 -1

231112

2112112

2 -4 2 -4 9 -4 2 -4 2 1 -2 1 1 -6 7 -2 -2 7 -6 1 1 -2 1

22222

1 -4 4 -4 9 -4 4 -4 1

221122

2 **-**5 2 -5 9 **-**5 2 **-**5 2

21412

-1 2 -1 2 -3 2 -1 -1 2 -3 2 -1 2 -1

References

- B. Bailey, J.L.: Alexander invariants of links, University of British Columbia, Ph. D. Thesis, 1977.
- C. Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, Oxford and New York, 1969, 329-358.
- F. Fox, R.H.: Free differential calculus, II, Ann. of Math., 59 (1953), 196-210.
- H. Hartley, R.I.: On two-bridged knot polynomials, J. Austral.

 Math. Soc., 28 (1979), 241-249.
- K. Kidwell, M.E.: Alexander polynomials of links of small order, Illinois J. Math., 22 (1978), 459-475.
- R. Rolfsen, D.: Knots and Links, Publish or Perish Inc., Berkeley 1976.
- Sc. Schubert, H.: Knoten mit zwei Brücken, Math. Z., 65 (1956),
 133-170.
- S. Siebenmann, L.: Exercices sur les noeuds rationnels, polycopié, Orsay, 1975.
- T. Torres, G.: On the Alexander polynomials, Ann. of Math., 57 (1953), 57-89.

Department of Mathematics Kobe University Nada, Kobe, 657 Japan