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Alexander Polynomials of Two-Bridge Links:

Taizo KANENOBU

Kobe University

Hartley [H] gave a necessary condition for a polynomial to be
the Alexander polynomial of a two-bridge -knot or the reduced
Alexander polynomial of a two-bridge link, He shdwed how the
coefficients of the polynomial may be read straight from the
extended diagram, which is derived from Schubert's normal form of
a two-bridge knot or link, and showed the following theorem: If
Ay = Z%:(-l)iaiti, where a, > 0, is the Alexander polynomial
of a twiigridge knot or the reduced Alexander polynomial of a two-
bridge link, then for some integer s, a5 < a; < .ne <’as = ag.q
R D ees )>an. On the other hand, using sufgery techniques,
Bailey [B] presented an algorithm for calculating the Alexander
polynomial of a two-bridge link from Conway's diagram. A4s a
corollary to this he proved a conjecture of Kidwell about the
linking complexity or geometric intersection numbers of a link iﬁ
the special case of two-bridge links.

The main results of this paper are Theorems 1 and 3, the former
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provides another algorithm for calculating the Alexander polynomial
of a two-bridge link putting every two-bridge link in the special
form of Conway's diagram. The latter gives some necessary
conditions: for a polynomial to be the Alexander polynomial of a
two-brdge link. These conditions are analogous to Hartley's
theorem above.. Thgo;em‘Z and Corollary 1 also give some properties
of fhe Alexander polynomial of a two-bridge link, including the
Torres condition [T]. Corollary 2 is a conjecture of Kidwell in
the case of two-bridge links. h
In Sect;on_B? we show some lemmas for Theorems 1 and 2 using
Fox's free‘differeptial calculus.A,In Section 3,5we summarize some
propertigs,of twofbridg?ilinks. .In Seqtionvq,lwg statg t@g’apqve-

mentioned results,,vln S@ction'5,‘weAproye‘TheonemQB.
1. Preliminaries

- In this paper, a link L will mean a pieceWise linear-embedding

Qf twozqriented‘circles> Kl.Tandv K2 in the 5—sphere SB. Two
links L and L' are called equivalent, if there is an orientation
preserving autohomeomorphism of Sj, which maps L onto L'.

The Alexander polynomial Alx,y) of L is an element of -the

polynomial ring. Z[X,X—l,y,y—l]_:/w,‘ and .is determined only up to

multiplicgtiqn by a unit #leJ.‘ Let @ =,T[l(S3 - L), and let
G' be its commutator subgroup. Then /= Z[G/G']; ‘the basis
{x,y} of G/G' 1is always taken.to be represented by the meridians

of K, .and K respectively. We will calculate the Alexander

1 2

polynomial of a link by using Fox's free differential calculus,
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see [F..L [T]°

Throughout this paper, we will often abbreviate a polynomial

f(x,y) in /\ to f and will use the following notation;
o=l o

2 () if n >0,
v i=0

Fn(x,y) = 4 0 if n = 0,

| _Z—i'(xy)‘i if n< O.

i=n

In the figures of this paper we will use a tangle [CJ], which
is a portion of the link diagram containing two arcs. An integral
tangle, which is represented by a circle labeled "i"™ or "-i",
where 1 1s a non-negative integer, is a 2-braid with i or -i

crossings, in the manner indicated in Fig. 1.

Fig. 1
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2. Lemmas

Lemma 1. Let L(q,r,s,t) be a link as shown in Fig. 2, where
T is any tangle. Let qu’r’s’t) be the Alexander polynomial
of L(q,r,s,t). If we set A= qu,r,s,t), AO =‘A(q,r,o,0) and

Ay = (0,0,0,0) " tpep

F
(2.1) A= {S(X—l)(Y'l)Ft + I}AO + Ff(xy)rcﬂo - AOO)’

where r # O.

as

Ky

Fig. 2



Proof. We have a presentation of 7E1(S5 - L{q,r,s,t)) as

follows:
generators; 8y, 2,5 855 Dy, Dy, by, b, by, by, b,
c, ((7sis n+l),
relations; (i) by = (bzlba)qbl(bélbl)?,
(11) b, = (bilba)qba(bélbl)q,
(iii) a, = (bBal)ral(aIlbgl)r,
(iv) by = (bsal)rbi(ailbgl)r,
(v) b = (b;lb4)5b5(b;1b5)s,
(vi) b, = (b;lba)sbq(bgle)s,
(vi1) ag = (bga,) a,(a; b,
(viii) b, = (b6a2)tb6(aélbgl)t{
(ix;) §5=1 (55 3sSn),

where c; and Sj = 1 are obtained in the tangle T, so

b c

19 bZ’ c7, ooy
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Sj is a word in a;, a5, n+l®
(i) and (ii), (iii) and (iv), (v) and (vi), (vii) and (viii)
imply |
(111) b, = bzbilpa,
(iv") by = b3ala£1,
(vi') b, = b6b51b4,
-1

ey .
(viii )»b7 = bgayas,
respectively, and we eliminate (ii), (iv), (vi) and (viii).

Using (vi') and (viii'), we have

-1 -1

(x) b5 b4 = a2a5

and we eliminate b,. Substituting (iv') and (x) in (v), we have

7
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-1 ,—l)s

(a_a

(v') by = (23257 b a a2  (aga]

and we eliminate (v). Substituting (v') in (vii), we havé‘ Pi =1,

where
{(aaa3 ) bsa (a 3 S}ta”{(églaéysa lb 1(a a

—l)s}t -1
1 3 372
and we eliminate b6. Substltutlng (11 ) and (1v ) in (X) we

have R, = 1, where

3
a-1y,-1
Ry = aza) b b,

and we eliminate bL+ and -b5'
Hence El(53 - L(q,r,8,t)) 1is presented by
generators; aq, azf‘as, bl’ bé’ bz, 07;';53; bn¥1,

relators; R., R :RB;qu, Ss» 5{.; s

1’ ~2° n’ _
where ‘
EIN poiy et
R2 = (bBal) al( l 5 ) a,
and
‘R, = (] b Y (0] -)qb'l

L 3
which come from (iii)and (i) respectively.
From this presentation we have the Klexander matrix of

L(q,r,s,t) as.follows:
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3 "2 ° 2 1 °7 ottt Cnay
R, (l—X)Ft f g (1fx?yFt 0 .o o
R, (1-x)F, -1 0 (y-l)Fr+1 0 0 | O
Ry 0 01 -1 y‘l y‘l ’
R, | -1 0 o 0 a(y™r-1) —ayTian 4

ol A

S50 0% X “s53 %55 |Bsp or €5 nn
S, L © 0 %y Ly -y, Em -+ én’nﬂ) ,
where f = S(X—l)(y—l)Ft'+ (xy)t and ;g = —s(x—l)(y-l)Ft - 1.

Add the third column to the second column, the -first column

multiplied by -y to the fourth column, énd the fifth column to

the sixth column, and delete the last colﬁmn. Then we have an

n x n matrix as:follows:

(2.2)

(2.3)

where

(l-X)Ft ,(xy-l)Ft g o} 0 -0
(1-0F, -1 o0 ' o o | A
0 11 -1 v 0 O
N . | | .
-1 0 0 y oy -1 1
0 A A A A, A_+A B
§ "1 2 3 20y |
where 0 1is a zero coluﬁn‘vector of dimnsioﬁ vn44, Ai is the ¥
oy €57 o fon
column vector . and B is the matrix ' : .
0[ni ‘ : 3n7 ot @nn
Let §§q,r,s,t) be the determinant of (2.2). Then
Tf(q’r9s,t) (Z—l)A(q,r’S’t),
z 18 x or y according as ¢ is represented by the

n+1l
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meridian of K, or K, [T, p.61].

Let

C be the (n-2) x (n-2)

matrix obtained from (2.2) by deleting the first and second row,

and first and second column.

the first row gives us

The expansion of (2.2) according to

(2.1-}-) i(QaI‘,S,t) - {S(X—l)(y—l)Ft + l}i(q,r,0,0) " ?(q,r,s,t).

Here ?(q,r,s,t) = (l—X)Ft -1
1
0
A
- (xy-l)Ft (1-X)Fr
o
-1
0
where GT
-1 0 nF of -1
1 0
0 v C § 0
Al -O
g§q,r,s,F) =,(xy)rFt x-1 O
) 0
1xy-1
i 0

o GnF
c

o (xy)T
c

o (T
c

R

C.

OT

is a zero row vector of dimension .:n-i.

0'I‘

Since

", we have



On the other hand i(q,r,0,0) = - (l-x)Fr -1 (xy)* ot |.
' 0
-1 Cc
4]

gince L(q,0,0,0) is equivalent to L(0,0,0,0), %0,0,0) _

éo,0,0,0) by (2.3), so we have

X-1 0 l-xy OT
#a,7,0,0) _ £0,0,0,00 _ 4 | © _
: Tl o c .
.
Siﬁce it is easily seen that
=1 0 1 o | |x1 o0 1-xy-0%}-
0 0
xy-1 _ c : - c
we have g,(q,r,s,t) = (}cy)r-ii »(z('q,’rs,d;())» - E(O’O’O’\O)) if r £ 0.

r
Thus it follows from (2.4) and (2.3), we obtain (2.1). O

Lemma 2. Besides the notation in Lemma 1, let Avé = A(q,r,O,t)

(t) (q,r,8,t.)
and AO= ’ ’O.Then

(2.5) A= s(x-1)y-1F A, +4y;

(t) (1) ' .
(2.6) A = FtA - XyFt-IAO’

(2.7) A(t) + xyﬂ(t-z) = (l+xy)A(t-l>

Remarks. (1) In the above notation A(t)yzﬂ and A(O) = AO
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(2) (2.7) is a special’case.oi Conway's result [C, p.538j; see

also [K, p.462].

“Proof. Putting s = O in (2.1) we have

¥ ;
| - _;t. 5 r
AO - AO + Fr(XY) (/.lo - Aoo) .

Combining this formula with (2.1) we obtain (2.5).

Next, from (2.1) we have

4 -4,

. 1 ‘
Fo{s(x-1) (5-1)4, + (xy)r-F-;(Ao - 4,0%
_r (A
=F (A - 4).
Since 1 - F, = %-S(yFt_l, we obtain (2.6).

Finally, using (2.6) we have

AR A(t?-l) = (F, - Ft—l_)Aé‘l) - E - F M

OtV Sy IO
Hence 7
NI s Y S R S R

and (2.7) follows. O

10
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3. Two—bfidgé links

According to Conway's bresentation [C], every two-bridge link
can be put in the form as shown in Fig. 3. It will be denoted by
C(al az,...,a ) 1nc1ud1ng the indicated orlentatlon of each |
component. The dlagram is slightly dlfferent in the cases n = 2k
and' n =‘2k+l, as indicated in Fig. 3. From this projection we
can see that a two-bridge link is a link witﬁ fwolcomponentsieach
of Wthh is-a trivial knot. Moreover a two-bridge link is inter-
changeable, that 1s there is an isotopy;bf S3 whichTintérchanges
th¢ two compongnts.; This follows immediétely from échubeft's
norﬁa% fopmrfsc], or Bailey [B, p.48] also proveqrthié:;sihgi
Conway's diagram.

Let & (>0) and ¢ be the coprime inteéers ébmputed fqpm the

continued fraction:

Lo, L L
B, ...t oAl

R
[}
\V]

Then o is even and O0O<|8l< &. The two—foldrcgver of §°
5ranched over this link is the lens space.fﬂ(d;Fj, see [C],-[S].
This 1link is equivalent to the link withgschubert'é?ﬂdfmalvform
(,8), denoted by S(«,B), endowed withnsuitable oriegtatgons.
According to Schubert [Sc, p.lhy], S(d,{j»{&ndm S(x',e')h are
equivalent if and only if o = «' and @ilf-_f g V{mod 2a) . ;
Furthermore, if §' = 8+o&>(m0d 2d) or - @8"42”5( + 1 (mod_-éw),
then S(«,€) differs from S(d, ') only by the oriénta%ion of

one of the components (cf. [S, p.7]).

11
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We can obtain easily another, continued fraction:

oL 1 1
8 = %1 " Fos + ...+ o

where m 1is odd. C(Ebl, 2b2, ey me) is then equivalent to

c(al,az,...,an) and will be denoted by vD(bl,b .,bm)._ In the

PIEE
following we will consider‘évery two-bridge link putting'in this
form (cf. [S, p.13]).

4. Main theorems

From Lemma 1, we have

Theorem 1. Let L. = D(0) and for n z1 let L = D(pl,ql,

0
n-1
D53dps++3Py 129, 1,0 ), where Up Tqu £0. Let A (x y)
i=1 “j=1. : :

be the polynomial inductively defined as follows:

4, = o;
(4.1) Al = Fpl; TR S

pn-l pn
A, = {*n ) (- 1><y LF, 4 1}An_1 v ) T, -4 ),

for n 2 2.

Then Ah(x,y) is the Alexander polynomial of L.

In the following, by the Alexander polynomial.of a two-bridge .
link we mean the polynomial defined in Theorem 1 and we. will.use
the following notation besides that in Theorem 1. Let zﬂ(p) be

the Alexander polynomlal of D(pl,ql,pz,qa,...,pn 1,qn 1,p) ﬁhus

A(p) - oy - A
L =4 and A =4, ;- Let l Ep . that is the .

n‘.

1}
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linking number of L . Le? ﬁn = Z::lpi[.
From Lemma 2, we have .

Theorem 2.

~ D SR (p,_1 *+ P

4.2) 4, = qn_l(x-l)(y-l)FppAn_l +A, 7 ;
(P) _ » A1) ,

1.3 AP =r A - wr A

) AP AP s ey (D,

Using (4.4) or Theorem 1 we can show easily the following

each formula by induction on n.

Corollary'l.:

(4.5) An(x,y):=An(y,X);"

1.6) A Goy) = By (5,3 mod (x-1)(y-1):
. n )

L -1
7)Aoy = G T A Gy .

The fact that a two-bridge link is interchangeaﬁie/assures us

of (4.5). From (4.6), we have immediately
(14-08) An(xsl)fi Fln(x’l).

(4.7) and (4.8) constitute the Torres conditions [T] for two-

bridge: links.

Definition 1. Let £(x,y) be a polynomial in A. If £(x,y)
#Z 0, then -degxsz (maximum x-power of any term of f) minus

(minimum x-power of any term of fj. If ’f(x,y)’: C;M then

14
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degxf = -1. We define deg;y'f in the same way.

Definition 2. /\+l(r,s) denotes the set of all polynomials

f{x,y) = 2 : a, .le‘—]‘ in A satisfying the following conditions.
P 1ij
r¢i1,Jss

(i) deg f = degyf = g-r.

(ii) Tet M(f) = B . «+» 85| and W(tf) = A e A ]-
A ... @ A ... a__-
rr.**°% “rs. . sr ss

‘Then both - M(f) and W(f) are symmetric matrices.
(idii) aij 2 0 if 4i+j 4is even.and- aij €0 if i+j is odd.
(iv) Let by =a;,. . .. Then

g|P

1P olePe,a e e k-, ul

lbk,Ol§ ‘bk’Ll,‘l. |’§ . g“bkﬂr,vl
for 0 sk g s-r, where u = [_125] *) apnd v . ]:k ;—u'] N
Furthermore A-l(r,s) denotes the set of aLl polynomlals f(x,y)

in A such that -f(x,y)&€ A"l(zr,s).

Theorem 3. For n =21, A é/l (r 25, ), where fn=

N
n n-1 - +
Tr T[ r = In ln and s_ = n Qn - 1.
i=1 l j=1 lq n 2 n 2
Note that r € 0 € s r -r =En_£)_ri and s, - S
n = = "n’ n n-1 2 n n-1
P * [Py \ ' o L '
= ——— The proof of Theorem 3 will be given in Section 5.

2 .

*) [ ] denotes the Gaussian symbol.

15
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Concerning the reduced Alexander polynomial of a two-bridge link,
Theorem 3 yields the weaker result than that of Hartley stated in
the beginning of this paper.

For the sake of Corollary 2 below, we need some preliminaries.

Definition 3. Let L =K, V K2 be a link and S be a Seifert

1
surface for K, with $ and K, in general position. If I, =
2(genus of S) plus (the number of times Ka‘ intersects 8S),
then fi = ming JS'.lS the linking complexity of K2 with Kl'

We define KZ in the same way. We call the ordered:pair (Fl,

[NSan
~

the ‘1linking complexity of the link L. .
This definition follows Bailey [B, p..45], see also [K].

Proposition 1. (Kidwell) If A(x,y) is the Aiexander'

polynomial of a link L with linking complexity (¥, Jé), then

¥ - 1% deg Ax,y).

Proof. See [B, p.467. O

Corollary 2. Let (rl, 3&)_ be the linking complexity of L .

Then

(4-9) tl - ra; , N ‘ % XE,“
~ ;
(4.10) degXAn(x,y) +:1 = 51 = ln'

Remark, The first equality of (4.10) is Propositionﬁ6;©f ¥

[B, p.57].

16
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Proof. (4.9) follows from interchangeability of a two—’bridge
link or (4.10). For (4.10), from the diagram of Ln’ we see that
o ,
Iy < ln’ By Theorem 3, degXAn+ 1= ﬂn and by Proposition 1,
r o des 4+ 1. O

5. Proof of Theorem 3

In this section we use the following trivial lemma without .

mention.

Lemma 3. Let f €& /\i(r,s) and g € /\i(r—k,s+k) (k =2 0).

Then f + g € /\s(r—k,s+k).

£
Lemma 4. Let f € A (r,s). Then
_ /\i(r, s+n-1) if =n > 0,

,__2 . c
(r+n, s-1) if n < O,

ané /\(_1) o Az, s+n—1')_, if n > 0,
n—lF (X_l,y).

where Gn(x,y) : X N

Proof. We show that £ € A+l’(rv,ls) implies anf € /\+1(r‘*,,‘s:+_:n—l)
if n > 0, ‘Tbﬁe kothely" cla'tse can be proved Similarlj.

It is clear that an szatis‘fies' the Abco’ndil’c‘iovvns . (1) ,7 (J_l) s |
(iii) and the first inequality of (1v§ in Definition 2. The

second inequality of (iv) can be réduced to Sublemma below. o

17
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n .
i ;
= = <
$ub1emma. Let f(x) 1Z=o;aix , Where a, a s and O a,

m+n

m
N J _ k -
a ees S a[n/Z]’ Let (jzzzox YE(x) = kz_:obkx . Then bk = bm+n—k

A
A

1

and O < by g blg_ cee b[(m+n)/2]'

Proof. We proceed by induction on n. For n = 0, 1, the

sublemma is trivial. Assume the sublemma p’foved' for polynomials

n
.

o 4 n . , ‘
of degree < n. Write f(x) le + xg(x), where g(x) =

Ol=O
a, . .x". Let ( x")g(x) = c.Xx . :Then <c. = ¢ .
§20 j+l §20 oo i m+n—2—1
< . . .
and 0 < colg ¢y £ ... £ C[Km+n—2)/2]. by inductive hypothesis.
m . m+n k ) . :
Thus if (Jixd)f(x) = Z::b1x , it is easy to see that ~b, =
. X k
j=0 k=0 :
a <
b and 0 < by g bl= oo S b[(m+n)/2]. ]

Lemma 5. 1If An-lé /\4:(r, s-1) and Aél)€ /\s(r,s_), then

/\z(r, s+p-1) if p> O,

-
/\ (r+p, s-1) if p< O.

(1)
Fp[]n -

An—l' The case p =1 is the hypothesis. If p 2 2, then

Ar(lp) €

Proof. (4.2) in Theorem 2 states that Ar(xp)

Xpr_l
s : (1) €

using Lemma L, FpAn &€ /\ (r, s+p-1) and -xpr-ldn—l €
NE(r+1, s+p-2). Thus Al(lp)e A&r, s+p-1). If p< -1, then

-$ -
P ALY, o A e Ao, 1), 50 A9 € ATNew, 510, O

18
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Temma 6. Let A;m> be the Alexander polynomial of D(pl,ql,

cees P

n-m’qn—m’l’qn-m+1’l’"”qn—l’l)' Then we have

(p, _ -1) , m
(5.0 45 =6 A - xya d DT (x~1)(y—l)ggg(qn_k+l)GkAh_k,

where theé last term denotss zero if m = 0.

Proof. We prove (5.1) by induction on m. For m = 0, it is

<
clear that .Ano> = A Assume that (5.1) proved for m-1.

0
: . . T . <m-1%
Substltgﬁlng Pyimel = 1 in An_ we have
A = A e 4O e 3 e e .
n n-m+1 o180 -m+1 J = 9y -k “KEn-k*
: 1)
) - _ (Pn-m . _
By (4.2), AT =, (e=D@-DA,_ +4 2" . Thus we have

| - (p,_ +1),
A:lm> = Gm{— (X-l)(y_l)An—m +An—llrll ! } -,_,Xme-—lAn—m

m E .
+ (x-1) (y-1) )% (o +16 A .
k=1 ; :

+1) (p,_,~1)

P
n-m
= (Xy+lkﬂn_m - x4, . . Thus we have

n-m

By (4.4), A
(p, . -1)
B = s, - w0, o}, - o,
" .
SR CSDICEI DD I C RN DI
k=1
Since (X+y)Gm - xme_l = Gm+l’ we have (5.1). a

Now we are in position to prove Theorem 3. We use induction
on n. For n =1, the theorem is clear. Assume the theorenm

proved for 'Ak’ where 1 £ kS n-1. Without loss of generality

19
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we may suppose that 4,1 < 0. . By Lemma 5 we have only to prove

for the case p, = 1. Then there exists an integer m such that:

(I) 1 € m £ n=1, pn—m+1 =D, o =

=1, Pr-m #1

and Q,_ < 0,

m’ 9n-m+1’ cc0 9po1

(I1) 1 £ m &n-2, Phem = Pnom+1l = Ppomrp T 0cc T Ppp 7L

< 0 and ¢ > 0, or

om’ Yp-m+1? "0 9p1 n-m-1

(III) m = n_l’ pl = pa Z s ee = pn—l = l, ql’ qz, e e ey qn-—l< 0.
X . €
To prove Theorem 3, it suffices to prove that Anym € /\(r,s)

L (-1)"¢
implies Ane N (r, s+m), where by Lemma 6
A (pp_p~1) =
(5.2) A =64  -xed + (X_l)(y_l)é;g(qn-k+l)den—k'
By Lemma 4, we have
(-1)"€
(5.3) @, 4, _, €A (r, s+m).

' n-ke -
é‘A(—l) £(r, s+m-k) for 1= k

By inductive hypothesis, An-k

. . . M-
< m. Then by Lemma 4, GkAn—k &€ /\(—l) (r, s+m~1); hence we
obtain

m =0 if q'_ = -1 for any Kk,
(5.14) (x-l)(y-ln‘:(qn_kﬂ)GkAn_k{ | ne
k=1 . é‘/(’l)jg(r, s+m) otherwise.

Case (I). -If »p # 1, then by inductive hypothesis,

n-m
£ . -
- - =
A(pn-m 1) Nz, s-1) if P, 2,
n-m £ .
/\(r-l, s) if p,_ s -1l

Thus, using Lemma 4, we have

20
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m
(pn_m—l) A("l) E(r+1, stm-1) if p =2,

n-m
mon-m -1)°¢ .
A (r, s+m) if P,y S -1.
Case (II).. If Ppm = 1 and g _ ., >0, then by inductive
hypothesis,
(p,,_,-1) s
n-m _ _
An-—m = An-—m—l €A (r, s-1).

Thus, using Lemma 4, we have

_1)

A(p_ n S
(5.6) -xyG 4 ph—m} ¢ /\C-l) £(r+l, s+m-1).

m. n-m

Case (III). Since m = n-1 and Py = 1, we have

-1)

A(pn’m = 0.

m n-m

(5.7) -XyG

LoAG-DTE, s
From (5.2) ~ (5.7), we have ‘An.e A ‘(r, s+m). This

completes the proof of Theorem 3.

APPENDIX

Alexander Polynomials of Two-Bridge Links iof 10 Crossings

For every two-bridge link of 10 crossings in the table of
Conway [C, p.355j, we list the Alexander polyromial. Two-bridge
links are presented by Conway's notation; PyPs---P, cenotes a
two-bridge link with the notation C(pl,pz,...,pn) in this paper.
The AKlexander polynomial is abbreviated in theAéame manner as

Rolfsen's table [R, Appendix c].
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5122

10

-2 1
-2 3 -2

-2 3 =2

-2

1

Lz

73

1-1 1

-1 1

-2 3

-2 5 -2

1

3 -2

u2l

622

-1 3
-2 4 -1

I

-1 02
-1 03 -1

3 -1
-1

3 -1

L4213

-1 3 -3 2

1-1 1

-1 1

-1 1

-1 1
1

1

2=3 3 -1
1

Llz12

1

523

2 -2 1
2 -3 2

-2 2

1 -3 3 =2

3-3 1

1
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3142

411112

-3 2
-3 5 -3
2 =5

1
1 -3 5 -2

-2 5 -3 1

-2 1

1

31213

345

-4 5 =2

1 -2 3-2 1

5 -4
-2

Al

—

311212

3322

-2 1

1
1 -5 5 -2

2 -4 4 -1
-1 4 o= 2

-2 5-5 1

3111112

3223

-2 1

1
1 -5 7 -2

-2 7 -5 1

2 =3 2
1-3 5-3 1

262

32122

-2
1-5 5-2

-2 5 -5 1
-2 1

P

_/\_/.u.
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213112

23212

-1

-1 2

2 -5 4 -1

2 -4 2
-4 7 b
2 -4 2

2
-1

-1 4 -5

2

-1

2112112

231112

..I_P__l
q/___r/fn_ul
= oo
=
4\
~ ol
1 |
2.u__.2 ru..ln__.l nd:._/?_ _I_._EZ_JZ
7o T A SO
2.n_».2 l.n_w.uw [AVER S A WV J_?__I_*

22222
221122
21412
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