Shape of compactifications

Yukihiro Kodama

(Department of Mathematics, University of Tsukuba)

All of spaces are assumed to be metrizable and hence com-

actification are metrizable ones.

General questions are as follows.

- 1) Has a good space always a good compactification ?
- 2) Does there exist a good space every compactification of which is bad ?
- 3) Does there exist a bad space having a good compactification ?

Here by "good" we mean "with good shape property".

Example 1. Let X be a countable discrete space. Then for every compactum Y there is a compactification α X such that the remainder α X-X \approx Y and Y is a retract of α X.

Example 2. There are compactifications α_i R, i = 1,2,3, of the real line R:

- 1) $\alpha_1 R$ is an FAR and $\alpha_1 R$ -R consists of two segments.
- 2) & R is an FANR and & R-R consists of two circles.
- 3) α_3 R is not pointed 1-movable. To construct α_3 R, let M be a solenoid and let f be a 1-1 map from R onto one composant of M. Put X = {(f(x),1/|x|+1:x \in R} \subset M X I and α_3 R = $\text{Cl}_{M \times I}$ X. Then X \approx R and α_3 R is a compactification of R. Since M is a retract of α_3 R, α_3 R is not pointed 1-movable.

Let us use the following notations.

 $eta R_+ = [0, \infty); \quad E^* = \sqrt{R_+}, \quad \text{where } \beta R_+ \text{ is the Stone-Čech compactification of } R_+; \quad I^* = \beta(I \times R_+) - I \times R_+. \quad E^* \text{ is said to be a } \frac{\check{\text{Cech}}}{0} = \text{cell.} \quad I^* \text{ contains two Čech O-cells } E_0^* = (\text{Cl}_{\beta(I \times R_+)} \{0\} \times R_+) \wedge I^* \text{ and } E_1^* = (\text{Cl}_{\beta(I \times R_+)} \{1\} \times R_+) \wedge I^*.$

A space X is said to be <u>Čech path connected</u> if for $x_0, x_1 \in X$ there is a map $f: I^* \to X$ (called a <u>Čech path</u>) such that $f(E_i^*) = x_i$, i = 0,1. X is said to be <u>locally Čech path connected</u> if for $x \in X$ and a neighborhood U of x there is a neighborhood $V \subset U$ of x such that any two points of V are connected by a Čech path in U. The following characterization of pointed 1-movability is given in [1].

Theorem 1. The followings are equivalent for a continuum X.

- (1) X is pointed 1-movable.
- (2) X is Čech path connected.
- (3) Every map $f : E_0^* \cup E_1^* \longrightarrow X$ is extendable over I^* .

As a consequence we have the following Krasinkiewicz's theorem.

Corollary (Krasinkiewicz [3]) A continuous image of a pointed 1-movable continuum is pointed 1-movable.

As an application of Theorem 1 we have the following theorem for compactifications of pointed 1-movable spaces.

Theorem 2 [2] Let X be a connected, locally Čech path connected, locally compact space. If αX is a compactification of X such that each component of the remainder $\alpha X - X$ is pointed 1-movable, then αX is pointed 1-movable.

Corollary 1. Let X be a space in Theorem 2. Then the Freudenthal compactification and the one point compactification of X are pointed 1-movable.

Space. If αX is a compactification of X such that every component of the remainder $\alpha X - X$ is pointed 1-movable, then αX is pointed 1-movable.

In Theorem 2, Collaries 1 and 2, as shown by Example 2, we can not omit pointed 1-movability of the components of the remainder. Also, we can not replace pointed 1-movability by pointed r-movability $(r \ge 1)$.

Example 3. Let r > 0. Let $\{S_1, f_{1,i+1}: i=1,2,...\}$ be the inverse sequence of r-sphere S_i with bonding map $f_{i,i+1}$ of fixed degree > 1. Let X' be the telescope associated with $\{S_i\}$. Put $X = C(S_1) \cup X'$, where $C(S_1)$ is the cone over S_1 . Then the one point compactification (= the Freudenthal compactification) of X is not r-movable.

Problem 1. Does there exist a locally compact ANR X such that every compactification of X is not movable?

Problem 2. Has every (pointed r-) movable locally compact space a (pointed r-) movable compactification ?

Problem 3. Has every locally compact metrizable ANSE a movable compactification ?

Problem 4. Has every locally compact metrizable ASE a compactification which is ASE ?

References

- [1] Y.Kodama, On fine shape theory III.
- [2] , Compactification of pointed 1-movable spaces.
- [3] J.Krasinkiewicz, Continuous images of continua and 1-movability, Fund.Math., 98(1978), 141-164.