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Compact Multi-Retractions and Shape Theory

Akira Koyama

Department of Mathematics, Osaka Kyoiku University

Recently Suszycki [ 6 ], [ 7 ] defined the concept
of multi-retractions of compact metric spaces and discussed
some properties. In this paper we shall extend that
concept to metric spaces and consider some properties

related to shape theory.

1} Definitions. In this paper we assume that all spaces

are metrizable and all maps are continuous. By a multi-valued

function Qﬁ from a space X to a space Y we mean a function 90

assigning for each point x € X to a non-empty closed subset L(x)

of Y and write ¢ :X ——=Y. 1In particular if {(x) is compact

- for every x €X, then we call (¢ a compact multi-valued function.

A multi-valued function (¢ :X ——=— Y is said to be upper semi-

continuous (u.s.c.) provided for every point x €X and every

neighborhood V of (P(x) in Y there exists a neighborhood U of x

in X such that @) = Y @(z) C V. For a multi-valued function

26U

Q:X ——= Y we shall define the graph of (2 as follows

$ = (Lyexxy|lye@x), xex§ .

Then let p: g'f_5 —— X and q: & — Y be natural projections.

Throughout this paper we shall use these notation.
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If a multi-valued function  :X —= Y is u.s.c., then
the graph @ of (p is closed in Xx Y. Moreover if ¢ is compact,
then the projection p:$ —= X is proper.

An u.s.c. compact multi-valued function (P:X ———=S:Y is’

said to be a compact multi-map (c-multi-map) provided @(x)

has the trivial shape for each x €éX.
Let Y be a subset of a space X. Then a c-multi-map

(P:X —= Y is said to be a compact multi-retraction (c-multi-

retraction) if y € ¢()(y) for every ye¢Y.
Let Y be a subset of a space M. If there exist a
neighborhood U of Y in M and c-multi-retraction from U to Y,

then we call Y a neighborhood compact-multi-retract of M

( neighborhood c-multi-retract). In particular if U = M, then

we say that Y is a compact multi-retract of M (c-multi-retract).

Remark. Let Y be a subset of a space X. If Y is a
{(neighborhood) retract of X, then Y is a (neighborhood)
c-multi-retract of X. If Y is an FAR, then Y is a c-multi-retract
of X. Hence there are a space X and a subset Y of X such that

Y is a c-multi-retract of X bhut not a retract of X.

2. Compact Multi-Retractios. Throughout this section
we assume that Y is a subset of a space X and ¢X: ——=Y
is a c-multi-retraction from X to Y. . Then the natural projection
p: ¢ —=X 1is a CE-map. Therefore we obtain the following

theorem.



Theorem 2.1. Pro- Wh(Y’Y) is dominated by pro- ﬂh<X:X)
in pro—g and %n(Y,y) is dominated by %n(X,X) in é’ for every-
n>1and y ¢ Y(x), where E? is the category of groups and
homomorphisms. Pro—Hn(Y) is dominated by pro-Hn(X) in pro—ﬁ

v . v
and H (Y) is dominated by H (X) in Y for every n > 1. -

v v
Moreover Hn(Y) is dominated by Hn(X) in 5 for every n> 1.
Theorem 2.1 induces some corollaries.

Corollary 2.2. If X is AC™(n22 1), then so is Y. And

if X 1is acyclic, then so is Y.

Corollary 2.3. If X is compact, connected and pointed
Sn—movable(nz 1), then so is Y (see [ 3 1).

In particular if X is a pointed l-movable continﬁum, then
so is Y. Namely c-multi-retractions between continua preserve

the pointed l-movability.

Corollary 2.4. If pro- 7cn(X,x), nz1land x€X, is stable

in pro—g, then pro- 7\:n(Y,y), y & P(x), is also stable in pro—g.
Then readers may consider that following questions are true.
Question 1. If X is an MAR (resp. MANR), then is Y also

an MAR (resp. MANR) ?

Question 2. If X is a pointed movable continuum, then
is Y also a pointed movable continuum ?
Question 3. Is it true that Sd(Y) £ Sd(X), where for

a space Z Sd(Z) = min $dimW |Sh(z) < Sh(W)§ 2

-3-
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Example. Let f:Y —= Q be the Taylor’s CE-map which
does not induce a shape equivalence [ 8 ]. Then we define X
as the mapping cylinder (YX[0,1]UQ)/~ of f, where ns identifies
(x,1) with f(x) for each x€X,and Y is idetified with Y x {03
in X. Moreover a c-multi-retraction {:X ——= Y is defined
as follows
@ ([y,t]) = {y} for every y&€Y and t&€1[0,1)
@([z]) = £71(z) for every zeQ.
Then X 1is homotopy equivalent to Q. Hence X is an FAR. But
Y is non-movable and Sd(X) = +00. Namely Questions 1 - 3 are

not true. Then, of course, Sh(X);ﬁ Sh(Y).

Related to Questions 1 - 3 we have some partial positive
answers.
Theorem 2.5. If dimX is finite, then Sh(X) > Sh(Y).

The proof of Theorem 2.5 is essentially due to Kodama [ 2 1].

Corollary 2.6. If dimX is finite, then Questions 1 - 3

are all true.

Remark. In Theorem 2.5 and Corollary 2.6 the assumption

of the finite-dimensionality of X is essential by the above example.
In the case of compacta we obtain other answers.

Corollary 2.7. Let XDY be compacta. If X is an FAR and

Y is either movable or Sd(Y) < +60, then Y is an PAR ( see [ 4 ] ).
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Corollary 2.8. Let X DY be continua. If X is an FANR

and Sd(Y)<+00 , then Y is an FANR ( see [ 1 Jor [ 9 ] ).

Corollary 2.9. Let X DY be continua. If X and Y satié?&
following conditions

(1) xéact,

(2) X is either movable or Sd(X) < +¢,

(3) Y is either movable or Sd(Y) < +,

then Sd(Y) < Sd(X) ( see [ 5 ] ).

3. Absolute Neighborhood Compact-Mluti-Retract and Absolute
Compact-Multi-Retract. A space Y is said to be an absolute

neighborhood compact-multi-retract (mC—ANR) provided for every

space N containing Y as a closed subset Y is a neighborhood

c-multi-retract of N. A space Y is said to be an absolute compact-

multi-retract (mC—AR) provided for every space N containing Y

as a closed subset Y is a c-multi-retract of N.
By definitions following basic properties of mc—AR and

mC—ANR are held.
3.1. If Y is an mc—AR and Y&« 7, then Z is also an mC—AR.
3.2. If Y 1s an mC—ANR and YO Z, then Z 1s also an mc—ANR.

3.3. A space Y is an mC—AR if and only if Y CNE&€AR as

a closed subset is a c-multi-retract of N.

3.4. A space Y is an mC—ANR if and only if Y < N€AR

as a closed subset 1s a neighborhood c-multi-retract of N.

-5-
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3.5. A space Y is an mC—AR if and only if for every closed
subset X of a space M and every map f:X —= Y there exist

a c-multi-map @:M.——= Y such that f(x) € @(x) for every x €X.

3.6. A space Y is an mC-ANR if and only if for every
closed subset X of a space M and every map f:X —= Y there
exist a neighborhood U of X and a c-multi-map (P:U —_— Y

such that f(x) & @ (x) for every x € X.

Remarks. 1. If Y is an AR (resp. ANR), then Y is an mC—AR
(resp. mc—ANR).
2. If Y is an FAR, then Y is an mc—AR. But there exists

a planar l-dimensional FANR which is not an mC—ANR (see [ 7 1).
The next problem is still open.
Problem 1. Is 1t true that every MAR 1is an mC—AR ?

Corresponding to results of section 2 we obtaln following

properties of mC—AR and mC—ANR.

3.7. If Y is am m -AR, Y €AC®, pro-Hn(Y) = 0 in pro-§

v vV
and Hn(Y) = I™(Y) = 0 in 18 for every nZ=>= 0.

3.8. If Y is an m -ANR, then both pro- nn(Y,y) and pro—Hn(Y)
are stable 1n pro—g for every n =1 and y€Y. Moreover if
Y is compact, %H(Y,y) is countable for every n =1 and y&€Y

v V¥
and both Hy(Y) and H (Y) are finitely generated.

3.9. Every compact connected mc—ANR is pointed Sn—movable

for every n > 1.
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3.10. Let Y be a compact mC—AR. If Y is either movable
or Sd(Y) < +00, then Y is an FAR. ' In particular a compactum
Y with Sd(Y) < +¥ is m,-AR if and only if Y is an FAR.

+3,11. Every compact mC—ANR space Y with S4d(Y) £ +® ‘is

1

an ‘FANR. Moreover if Y is AC , then Y has the shape of a finite

polyhedron.

3.12. Every finite-dimensional mC-ANR is an MANR.

Related to properties of mc—AR and mc—ANR we have following

open problems ( ¢.f. [ 7 1 ).

Problem 2. Does every compact mC—ANR space Y with Sd(Y)

< +60 have a shape of a finite polyhedron ?

Problem 3. Is it true that every mc—ANR space Y with

Sd(Y) < +® is an MANR ?

Problem 4. Let g:Y ——== X be a CE-map. Is it true that

Y is an mC—ANR if and only if X is an mc—ANR ?
Then we shall consider Problem 4.

Lemma 3.13. Let ¢%X —== Y be ameFmap and g:¥Y — X
be a map such that y &€ @(g(y)) for every y&Y. Then if X is

an ANR (resp. AR), Y is an mc—ANR (resp. mC—AR).

Corollary 3.14. Let g:Y — X be a CE-map. Then if

X is an ANR (resp. AR), Y is an mc—ANR (resp. mc-AR).
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Remark. Let f:Y —= Q be the Taylor’s CE-map ( [ 8 7 ).
Then by Corollary 3.14 Y is an mc-AR. But Y is not movable.

Then the assumption for Y in properties 3.10 - 3.12 are essential.

Theorem 3.15. Let g:¥ —= X be a CE-map. Let N be
an AR containing X as a closed subset. If there are a
neighborhood V of X in N and a 'c-multi-retraction ¢ :V —= X
'such that dim J(z) < +00 for every z&V, then Y is an mC—ANR.

Moreover if V = N, then Y is an mC-AR.

Corollary 3.16. Let g:Y —= X be a CE-map. If X is
finite-dimensional and an mc—ANR (resp. mc—AR), then Y is an

mc—ANR (resp. mC-AR).

Remark. In the proof of Theorem 3.15 we essentially use
the fact that
sn(s~1 (G (2))) = Sh(Y(2)) for every z €V.
Then by the similar way we obtain the following.

Theorem 3.15'. Let g:Y —= X be a hereditary shape

equivalence. If X is an mC-AR (resp. mC—ANR), then so is Y.

In fact Corollary 3.16 is the special case of Theorem 3.15'.

Then we shall give another problem.

Problem 4'. Let g:Y —== X be a hereditary shape equivalence.

Then is it true that if Y is an mc-AR (resp. mc—ANR), So is Y 2
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