goooboooogn
0 454 0 19820 138-159

138

Verification Conditions for Procedure Calls

Keijiro ARAKI and Kazuo USHIJIMA

Department of Computer Science
“and Communiqation Engineering
Kyushu Undiversity
Hakozaki, Higashi-ku

Fukuoka 812, JAPAN

Abstract

In this paper we discuss axiomatic proof of procedure calls,
We deal with a Pascal-lLike programming language with |
(a) arrays, pointers and records;

(b) assignment statements, compound statements, if statements,
while statements and procedure calls including predeclared proce-
dure new.

Rrocedures may contain vrecursive calls and have both
variable parameters and value parameters, We place two restric-
tions on procedures.

(1)Global variables are not allowed to appear in any procedures,
(2)ALL parameters of procedures other than new must be of integer
type.

These restrictions lead concise and clear proof rules, through
which we obtain concise verification conditions for procedure
calls. They can be applied easily, and are readily implemented in

verification systems.

139

1. Introduction

We ~have presented a formal logical system C[Araki=-791 for
proof of partial correctness of Pascal-like programs. Those pro-
grams consist of assignment statemenfs, compound statements, if
statements, while statements, and calls of the predeclared proce-
dure new. Programs deal with data of integer type, array types,
pointer types, and record types. According to the logical system,
we have implemented a verification condition generator
[Araki-80]. It automatically generates verification conditions
for partial correctness of the Pascal-like programs.

However we cannot deal with procedures other than new in the
Logical system mentioned above. In this paper we present proof
rules fof procedure calls so as to prove partial correctness of
programs with more general procedure calls.

Procedures may include recursive calls, and have; both
variable parameters and value parameters. We place two restric-
tions on procedures,

1) Non-lLocal variables are not allowed to appear in any proce-
dures,
2) ALL parameters of procedures other than new must be of integer
typea

These restrictions lead clear and concise proof rules, which
can be applied easily to program verificatioh. We can obtain ver-
ification conditions for procedure calls .through these proof
rules, If we prove the verification conditions true, then the
partial correctness of programs are established. Verification
condition generators for programs with procedure caL{s are readi-
ly implemented owing to the clarity of the proof rules,

In section 2, we describe briefly the notations used in this

140

paper. In section 3 we discuss procedure calls, and present proof
rules for them. In section 4 we obtain verification conditions
for précedure calLé. In sectionVS we present applications of the
proof rules to proving partial correctness of programs with pro=-

cedure calls. Concluding remarks are given in section 6.

2. Notations

Most of the notations used in this paper are defined 1in
[LAraki=79]. The important of them are summarized in this section.
The newly introduced notations.concerning procedures are also de-

scribed betqw.

Partial correctness assertion

P{L{sSsS Ya

Here P and Q are Llogical formulas, and S is a program, This
notation means "if P is true before initiation of the program S,
then Q@ will be true on its completion." P is called the input

condition for S, and Q@ is called the output condition for S.

Weakest antecedent

Ls1a

Here @ is a logical formula, and S is a program. It means
"after executing the program S, @ holds.”" Any formula Llogically
equivalent to [SJa is called a weakest antecedent of @ via Sa If’
P > [sla is proved, then the partial correctness assertion P{S}@
is proved. Therefore any formula which logically implies P > L[Ss]a
is called a verification condition for partial correctness of the

program S with respect to the input condition P and the output

141

condition @. We get a verification condition by transforming the
output condition via the program.. The transformation rules _have

been presented in CAraki=791].

procedure declaration

procedure pr{var x1,..s,xkzinteger;

‘y1,...,ym:integer);

Here pr is a procedure identifier, x1,s.ss,xk are formal
variable parameters, yl1,ewse,ym are formal value parameters, and B
is a procedure body. ALl parameters are of integer type. Non-

Local variables cannot appear in any procedures,

Procedure call

privl juaua,vk,t1,0ae,tm)

Here v1,+.es,vk are actual variable parameters, and t1,eas,tm
are actual value parameters. Vv1,s..,vk should be distinct
variabless t1,s4e.,tm are expressions of integer type which - may

include actual variable parameters v1,.es,Vvkes

3. Procedure Call Proof Rules

According to [LHoare-731, a procedure call
pr(v1,...,vk,t1)...,tm) is considered to be equivalent to the

sequence of assignment statements (executed simultaneously):

V1 = f1(\l1,...,Vk,t1,---,tm)

= = 3-1

vk = fk(v1,...,yk,t1,...,tm) .

142

f1,eae,fk are regarded as the functions which map the initial
vatues of the actual parameters v1,eaae,vk,t1,c--,tm on entry to
the procedure onto the final values of v1,...,vk on completion of
the execution of the procedure body B.

Instead of writing down these functions f1,...,fk, however,
we describe the meaning of execution of the procedure body B by a

partial correctness assertion as follows.

yji=dj A IN(Xx1,eee,Xk,¥1,0as,ym)

m
j=

1
{832 (3-2)

Formulas IN(x1,eaa,xk,t1,eee,tm) and OUT(Xx1,auu,xk,d1,aa0s,dm)
represent the meanings of the functions f1,...,fke The condition
IN represents a relation between the initial values of the param-
eters on entry to the procedure. The other condition OUT repre-
sents a relation between the result values of the variable param-
eters and the initial values of the value parameters, which are
denoted by fresh variables d1,...,dm.

Now, we consjder a procedure call
Pri{x1,eee, Xk, ¥l s0ua,ym)

in which the names of the formal parameters have been fed back as
actual parameters. It is fairly obvious that this call has the
same effect as the execution of the procedure body itself. Thus

we obtain the following rule.

143

procedure pr(var xT1,..s,xk : integer;

Y1,eea,ym & integer);

m
A

yi=d] A IN(X1,aca,xk,y1,0ae,ym)
J—1 - .

{812

OUT(XT,unny,Xk,d1,ees,dm)

e
[

yi=dji A INC(x1,eee,Xk,¥1,uas,ym)

'c pr‘(X1,.--,Xk,y1,...,ym) } (3_3)

OUT(x1,eus,%xk,d1,ene,dm)
Consider next the more general call
pf;(V1,-.-'Vk’t1,-.-'tm) -

This <call 1is dntended to perform upon the actual parameters
Vl,eas,Vk,t1,eea,tm exactly the same operations as the body B
would perform wupon the formal paramefers XT,0n0,XK, ¥l puuu,ym,
Thus, 1if the condition IN(v1,.ee,Vk,t1,.as,tm) holds before the
procedure call, the condition 0UT(v1,...,vk,d1,...,Qm) is ex-
pected to hold after execution of the <call. Here var{ables
d1,«as,dm denotes respectively the values of t1,saa,tm immediate-

ly before the procedure call. This reasoning leads the rule

n>s

yi=di A INCX1,eearXk, Y1 saua,ym)
j 1 ~
{ pr(x1,eas,%XK,¥1 puaa,ym)

OUT(Xx1,0ampXk,dl,eus,dm)

144

“m
i=1
Cprivl,eae,vk,t1,aau,tm) 2 <3-4}

OUT(v1l ,een,vk,d1,euna,dm) .

Above two rules correspond to the rule of invocation and the
proposed rule of substitution in [Hoare-71l]., In this paper, actu-
al value parameters can contain actual variable parameters, while
in [Hoare-711 they cannot.

The rules given above are, however, not sufficient for the
proof of the properties of recursive procedures, The reason 1is as
follows. The body of a recursive procedure contains at least one
call of itself, When we want to prove the second premise in (3-3)
so as to establish the partial correctness of a procedure call
(the conclusion of (3-3)), we encounter a call of ditself, and
must prove the partial correctness of the recursive call, which
we must prove by means of the rule (3-3), Thus we must prove
again the partial correctness of the body as the second premise.
And the proof will continue forever,

The solution to the infinite regress is simple: to permit
the wuse of the desired conclusion as an induction hypothesis 1in
the proof of the body itself. Therefore, the rule (3=-3) should be

replaced by the followinga.

procedure pr(var x1,..s,xk ¢ integer;

Yl,ea=,ym & dinteger);

145

m
{prix1,eee,xk,y1,uea,ym) 2}
OUT(x1,ewwu,xk,dl,eau,dm)
m
F A yizsdi A INGTeea,xk,yl,mea,ym)
j=1 .
{8B 12}

OUT(xXx1,ans,%xk,d1,aae,dm)

yi=d] A INCX1,eca,Xk,¥1,0ae,ym)

>3

3
{ pf‘(X1,.--,Xk,)’1,...,ym) } (3'—5)

OUT(x1,eeu,xk,d1,eaa,dm)

When we . want to prove partial correctness of mutual recursive
procedures, we add the desired conclusions of.all procedures that
are called in the procedure bodies to the second premise as

induction hypotheses,

b Verification Condjtions for Procedure Calls

Using the proof rules presented in the previous section, we

prove the partial correctness of a procedure call

P {pr(vl,eee,vk,t1,0ua,tm)} Q .

Besides those proof rules, we use the rules of consequence

P> R , R{S}A PCS}R , R D Q

P{L{S 2Xa and P {S Xa

and obtain verification conditions for procedure calls. We estab-

Lish the partial correctness by proving the verification condi-

146

tions.

The verification condition is written as

P > (INC(vl,eaua,Vk,t1,auaa,tm)
/\(0UT(W1,..-,wk,t1,...,tm) (4_1)

DLvl:=wl; aws ; vk:=wkl Q)) .
By separating the above, we consider the following two formulas.
PD IN(V1,---’Vk,t1,---'tm) (4-2)

PA OUT(WT yuan,Wk,t1,0aa,tm)

O [vl:=uwl; «a« ; vk:=wkl Q (4-3)

The formula (4-2) requires that the condition IN din the
input condition for the procedure body should hold before the
procedure call. That IN(vl,.eaVk,t1,eaa,tm) holds assures that
the output condition OUT for the procedure body will hold after
execution of the call.

The formula (4-3) requires that the condition
OUT(W1,euaWk,t1,uau,tm) should imply the formula @, where OUT is
the relation between the new values of the variable parameters
after execution of the call and the initial values of the wvalue
parameters. Here the initial values of the value parameters are
denoted by t1,eas,tm themselves, while the new values of the
variable parameters v1,...,vk are denoted by fresh variables

W1l,ene,Wke Assignment statements
v1:=wl; eea ; vki=wk

represent that the values of the actual variable parameters are
changed after execution of the procedure call,

We must also prove the partial correctness assertion of the

147

procedure body

>3

yi=di A INCXT,eeu,xk,¥1,00e,ym)

fl
-

j
{B (4=4)

0UT(X1,'--,Xk,d1)--.,dm) -

When the procedure is recursive, we prove this assertion by using
(4=4) itself as an induction hypothesis., It is only once that we
must prove the partial correctness of the bodya.

Sequential assignment statements in (4-1) ought to be ex-
ecuted simultaneously as, for example, a multiple assignment

statement
V1, ean,Vk 2= Wl,uae,uwk

in [Gries-80]. Since W1l,.ss,wk in the right hand sides of the as-
signment statements in (4-1) are fresh variables, however, the
sequential execution of them is equivalent to the simultaneous
execution.

As each actual variable parameter is a variable of 1integer
type, it 1is one of the following variables: a simple variable
(e.ge x), an integer field of a record»variabLe (e.ge r.F), an
array element (e.g. A(i)), a referenced variable of integer type
(e.g. p?), and an integer field of a referenced record (e.ge.

pf2«F)« A weakest antecedent via each assignment statement
vi 1= wWj

is generated by applying a transformation rule which is_ de-
termined by the kind of the variable of the Left hand side

CAraki=79].

- 10 -

148

In this paper, since we restrict that no procedure can con-
tain non-local variables, we have presented simple and clear ver-
ification conditions for procedure calls.

The correspondence between actual parameters and formal pa-
rameters in the verification condition (4=1) dis performed by Call
By Value Result, which is different frdm CaL[By Reference in the
programming Llanguage Pascal. Generally the effect of Call By
Value Result is not necessarily the same as that of Call By Ref=-
erence,., But the prohibition of non-local variabLes appéaring in
procedures makes the effects of both parameter passing mechanisms
equivalent. The prohibition contributes clarity and conciseness
of verification conditions.

There are some proof rules ELondon—?S, Luckham=79, etced in
which non-local variables can be dealt with.s In those rules,
non-tocal variables must be declared at the head of the proce=-
dures, and are treated in the same manner as parameters. In this
paper, only parameters can pass the dnformation in procedure

calls, It also Leads clarity and concisenessa.

5. Applications

In this section we prove partial correctness assertions of
procedure bodijes and procedure calls. We first obtain verifica-
tion conditions by'apptying the proof rules, and then -establish
the partial correctness by proving them. “

Three examples are presented:

1) a non-recursive procedure which calculates the greatest common
divisor of two ihtegers,
2) a call of a factorial procedure with array elements as actual

parameters, and

- 11 -

143

3) mutual recursive procedures which <calculate McCarthy's 91

function.

5.1 Non-recursive procedure

A non-recursive procedure which calculates the greatest com-

mon divisor is written as the following.

procedure gcdproc(var g:integer;
Xx,yzinteger);

var r ; integer;

begin

while y<>0 do
begin
r = x mod y;
X = Y;
y :=r
end

end

This procedure returns the greatest common divisor g of two
integers x (>0) and y (>=0).
First of all, we want to prove the following partial

correctness of the procedure body.

x=x0 A y=y0OA x>0 A y>=0
{procedure body} (5-1)

g=gcd(x0,y0)
We give a loop invariant condition
gcd(x0,y0) = gcd(x,y)
for the while statement in this procedure body. According to the

- 12 -

150

transformation rules in [Araki-791, three verification conditions

are obtained.

x=x0 A y=y0 A x>0 A y>=0

5 gcd(x0,y0)=gcd(x,y)

gcd(x0,y0)=gcd(x,y) A\ y<>0

o gcd(xO,yO)=gcd(y,x'mod y)

gcd(x0,y0)=gcd(x,y) A y=0

> x=gcd(x0,y0)

Considering the properties of greatest common divisor, we can
prove these three formulas true. Therefore the partial
correctness of the procedure body (5-1) 1is established,

Now we are going to prove a partial correctness of a call of

this procedure.
a>0 A\ b>=0 {gcdproc(z,a,b)} z=gcd(a,b) (5-2)
The verification condition for this assertion becomes as followsa

a>0 A b>=0
D (a>0 A b>=0
/\ (w=gcd(a,b)

D [z:=wl] z=gcd(a,b)))

a>0 A b>=0
D> (w=gcd(a,b) D w=gcd(a,b))

true

m

Here the variable w denotes the new value of the actual variable
parameter z after execution of the <call, Thus the partial

correctness of this call (5-2) is proved.

- 13 -

151

5.2 Procedure call with array elements as actual parameters

e

Let us consider a recursive procedure below which calculates

the factorial of an integer,

procedure fact{(var x:integer; n:integer);

var t : integer;

fact(t,n-1);

X = n*t

(]
3
[o X

end

This procedure returns the factorial x of a non-negative 1integer

ne We first prove the following partial correctness assertion.
n=n0 A\ n>=0 {procedure body} x=n0! ‘ - (5=3)

We construct a verification condition for this assertion, wusing
(5-3) itself as an dinduction hypothesis. The verification condi-

tion is written as follows:

n=n0 N\ n>=0
D (n=0> [x:=11 x=n0!
A (n<>0 D (n=1>=0
A (w=(n=1)!
O [t:=wllx:=n%*tl
x=n01J)))
= n=n0 A n>=0
> (n=0 > 1=n0!

A (n<>0 D (n=1>=0

- 14 -

152
A (w=(n=1)1

> n*w=n0!1))))

(n=n0 N\ n>=0 A n=0 D 1=n0!)
A (n=n0 A n>=0 A n<>0
35 (n=1>=0
A w=(n=1)! D n*xw=n0!))

truea.

Therefore the partial correctness of the procedure body (5=3) 1is
proved.
Now we want to prove the partial correctness of a procedure

call with array elements used as actual parameters.

ACid>=0 A 1<>]
{fact(AC(i) ,A(i))2 (5-4)

ACid=A(i) L

The verification condition for this assertion dis written as

follows:

ACiI>=0 N\ 1<>]
D (A(j)>=0
N\ (wu=A(3)]

D [AGI):=wl ACI)=ACiI 1))

{1}

ACiI>=0 A i<>j
> (w=A(j)!
D> (IF i=i THEN w ELSE A(i))

=(IF j=i THEN w ELSE A(j))>!)

AC3I>=0 N\ 1<>]
D (w=A(i) I D w=A(iI)

true.

- 15 -

153

Here the weakest antecedent of the output condjtion A(i)=A(j)!
via the assignment statement A(i):=w is obtained by means of the
transformation rules presented in [Araki-79]. Therefore the par-

tijal correctness of the procedure call (5-4) is proved.

5.3 Mutual recursive procedures

Consider the following mutual recursive procedures which
calculate McCarthy's 91 functijon. (We owe thijs example to EXAMPLE

5-19 in [Manna-741]1.)

procedure p1(var z1:integer; x1:integer);

var t1 : integer;

begin
if x1>100 then z1 := x1 - 10
else begin
p2 (t1,x1+11);
p1(z1,t1)
end
end;

procedure p2(var z2tinteger; x2:integer);

var t2 : integer;

begin
if x2>100 then z2 := x2 - 10
else begin
p1(t2,x2+11);
p2(z2,t2)
end
en

First of all, we want to prove the following partial

- 16 -

154

correctness assertions of the procedure bodiesa

true
{procedure body of p13 (5=5)
(x1>100 > 2z1=x1-10) A (x1<=100 > z1=91)
true
{procedure body of p22} (5-6)

(x2>100 > 22=x2-10) A (x2<=100 > z2=91)

We prove (5-5) alone, and (5-6) will be proved'just the same. The
verification <condition for (5=5) is obtained by using (5-5) and

(5-6) as dinduction hypothesese.

(x1>100 D> Lz1:=x1-101
(x1>100 > z1=x1-10)
A (x1<=100 D> z1=91))
A (x1<=100
D (true
A ((x1+11>100 D w2=(x1+11)-10)
A (x1+11<=100 D w2=91)
D [t1:=w2j
(true
A ((t1>100 D> wi=t1-10)
A (t1<=100 > w1=91)
> Lz1:=w1l
(x1>100 O z1=x1-10)
A (x1<=100 D 21=91))))))
= (x1>100
S (x1>100 > x1-10=x1-10)

A(x1<=100 > x1-10=91))

- 17 -

135
A(x1<=100

S ((x1>89 O w2=x1+1)
A (x1<=89 D w2=91)
D ((w2>100 D wl=w2-10)
A(w2<=100 D w1=91)
> ((x1>100 2 w1=x1-10)
A(x1<=100 > w1=91)))))
= ((89<x1<=100 > w2=x1+1)
A(x1<=89 > w2=91))
O ((w2>100 D wi1=w2-10)
A(w2<=100 D w1=91)
D ((x1>100 D w1=x1-10)
A(x1<=100 D> w1=91)))

true

m

Here w1l and w2 respectively denote the new values of actual
variable parameters of calls of procedures p1 and p2. This for-
mula dis proved +true by <case analysis (i.ea, four cases:
89<x1<=100, x1<=89, w2=101, and w2<=100). Therefore the partial
correctness of the procedure body is proved.

Now we prove the following partial correctness.
true {p1(a,100);p2(b,101)3F a=91 A b=91 (5-7)
The verification condition for this assertion is written as

(100>100 D> w1=100-10)
A(100<=100 D> w1=91)
O La:=w1l
((101>100 D w2=101-10)
A(101<=100 D w2=91)

-18_

156
> [b:=w2l (a=91 A b=91))

w1=91

D (w2=91
D w1=91 A w2=91)

true,.

m

Therefore the partial correctness assertion (5-7) is proved.

6. Conclusion

We have presented proof rules for procedure calls, through
which we obtain verification conditions. If we prove these condi-
tions, the partial correctness of procedure <calls are estab-
lished., The proof rules and the verification conditions presented
in this paper are so clear and concise that they are easily ap-
plicable to verification of programs with procedure calls. We can
deal with mutual recursive procedures and procedure calls even
with array elements, record fields, and referenced variables as
actual parameters. Verification conditions can be obtained by au-
tomatic transformation of input and output conditions via state-
ments in programs by means of the verification condition genera-
tor [Araki-81]. This is a revised version of the previous one
CAraki-80] so as to deal with programs with procedure calls.

We have placed two restrictions upon the procedures, First,
although procedures are able to have both variable parameters and
value parameters, parameters are of integer type. This restric-
tion comes from that of the logical system C[Araki-791. If a
pointer is used as an actual parameter and the variable refer-
enced by it appears in the procedure, some conflicts with the

second restriction mentioned below will occur, because referenced

- 19 -

157
variables are to be regarded as the global variables.

The second restriction is that non-LlLocal var{ables cannot
appear in any procedures. In [London-78, Luckham=79, etc.l, non-
Llocal variables are allowed to appear in procedures. However they
should be declared at the head of the procedures, and afe'treated
exactly as parameters in the procedure call proof rules, Con-
sidering that the role of non-local variables 1is essentially
equivalent to that of parameters, we prohibit to use non-Llocal
variables. Only parameters can pass the information on procedure
calls.

These two restrictions have led clear and concise procedure
call proof rules and verification conditions. They are applied to
verification of programs with procedure calls more weasily than
those of [Apt-77, London-78, Luckham-79, etc.,] are. The second
restriction agrees with the recommendations to write prbcedures
with no side effects and with information hiding. If we remove
" the first restriction and allow parameters of more complex data
types, then a logical system for a programming lLanguage with ab-
stract data types [Liskov-77, Nakajima-80, etc.] will be pre-
sented. To this end, we must reconstruct our logical system.

We can easily carry out proof of partial correctness of pro-
grams with procedure calls by proving the verification conaitions
presented 1in -this paper. To provide a method for ' program ver-
ification and to establish the partial correctness of each given
program are different things. Program verification can be con-
sidered as describing semantics of programs. It seems not 'so
easy, however, to describe the meaning of each program adequate-
ly. Besides the full understanding of the programs, the progress

in studies on programming languages and assertion Llanguages

- 20 -

158

suitable for verification is required.

Acknowledgement

We would Like to express thanks to Prof. T.Hayashi and Mr,
KeYoshida for their important comments on earlier drafts of this

paper.,

References

CApt-771
Apt,K.R. and de Bakker,J.W.: "Semantics and Proof Theory of
Pascal Procedures," Lecture Notes in Computer Science, No.52,

Springer-Verlag, 1977.

CAraki-791]
Araki,K., Hayashi,T. and Ushijima,K.: "Backward Transformation
Rules for Programs with Pascal-like Pointers and Records,”" Trans.

IECE Japan, Vol.E62, No.10, 1979.

CAraki=-801
Araki,K., Yoshida,K., and Ushijima,Ke: "Implementation and Prac-
tice of a Verificatijon Condition Generator for Programs with

Pointers and Records,” Trans. IECE Japan, Vol.63-D, No.10, 1980.

CAraki-811

Araki,Ka., Yoshida,K. and Ushijima,K.: "Proof rules for Procedure
Calls and a Verification Condition Generator Based on Them," Pa-
per of technical Group on Automata and Languages, IECE Japan,

1981 (July).

[Gries=-801

Gries,D. and Levin,G.: "Assignment and Procedure Call Proof

- 21 -

159

Rules,”" ACM Trans. Program. Lang. Syst., Vol.2, No.4, 1980.

[Hoare-711
Hoare,C«AaR.: "Procedures and Parameters: an Axiomatic Approach,”

Lecture Notes in Mathematics, No.188, Springer-Verlag, 1971.

[Hoare=731
Hoare,CsA.R. and Wirth,N.: "An Axiomatic Definition of the Pro-

gramming Language Pascal,' Acta Informatica, Vol.2, 1973.

[Liskov=771
Liskov,B., Snyder,A., Atkinson,R. and Schaffert,C.: "Abstraction

Mechanisms in CLU," Commun. ACM, Vol.20, No.8, 1977.

[London-781
London,R.lL«, Guttag,J.V., Horning,Ja.J., Lampson,B.W.,
Mitchell,J.G. and Popek,GaJa: "Proof Rules for the Programming

Language Euclid," Acta Informatica, Vol.10, 1978.

[LLuckham=791]
Luckham,DesCs and Suzuki,N.: "Verification of Array, Record, and
Pointer Operations in Pascal,” ACM Trans. Program. Lang. Syst.,

Vol1, No.2, 1979.

[Manna=-741

Manna,Z.: Mathematical Theory of Computation, McGraw—HifL, 1974,

[LNakajima—-801
Nakajima,R., Honda,M. and Nakahara,H.: "Hierarchical Program
Specification and Verification =--- a Many-sorted Logical

Approach,” Acta Informatica, Vol.14, 1980.

- 22 -

