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1. Introduction

Consider a permutation network with N input terminals and N output ter-
minals. We denote this permutation network by PERMU(N). Suppose that the
ij-th, 1

permuted to the i

-th, . . ., and i, ~th input terminals of PERMU(N) are cyclically

2 k

-th, i,-th, . . . ,ik—th and i, -th output terminals. We

2 3 1

call this sub-permutation on PERMU(N) a wire-cycle. Any permutation connec-
tion between input terminals and output terminals of PERMU(N) can be expressed
as a prodﬁct of wire—cycles.

We assume that a signal at each terminal of PERMU(N) is any of integer
from the modulo-p field Jp= (0, 1, . . .,p~1), where p is a prime integer.
The usual binary case then corresponds to p=2. Then we can interpret that
PERMU(N) is a converter from p-nary numbers of N digits at input terminals
to p-nary numbers of N digits at output terminals. A p-nary number or its
corresponding decimal number at the inpﬁt terminals (at the output terminals)
under this interpretation is called an input-state (output-state). A state

transformation induced by a permutation connection on PERMU(N) is a permuta-
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tation on {0, 1, . . . ,pN—l}. Suppose that input-states Al’ A2’ .. .,Ak
are cyclically permuted to output-states A2, A3, - "Ak’ Al by a permuta-
tion connection on PERMU(N). We call this sub-permutation of states a state-
cycle. Any state permutation induced by a permutation connection can be

expressed as a product of state-cycles.

Input Terminals Output Terminals
Terminals
for o~ . 1
Iniyializing
Input~States -0~ 2 2
o
PERMU (N)

Feedback Lines with Unit Delay

Fig. 1 A cyclic state generator

PERMU(N) can be used as a cyclic state generator as shown in Fig. 1.
For this purpose cycle periods of state-cycles generated by the cyclic state
generator gre important characters of a permutation connection. The study
discussed in this paper was motivated by a desire to achieve a basic under-
standing of the relation between a permutation connection and cyclic behavior
of signals of cyclic periods. 1In particular, we study the relation between

cycle periods of wire-cycles and cycle periods of sfate—cyciesa

2. Characterization and Combinatorial Studies

We characterize each permutation connection by cycle periods of wire-

cycles and state-cycles. We call these characteristics a wire-sequence and

-2 -
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a state-sequence, respectively. The wire-sequence of permutation 7 is denoted
by W(m), and the state-sequence induced by m on PERMU(N) is denoted by_Sp(ﬁ).
W(r) and Sp(ﬂ) are formally defined as follows: Let Gﬂ(i) be the number of
wire-cycles of period i in the expression of the product of wire-cycles for w.
Let E;(i) be the number of state-cycles of period i in the expression of the
product of state-cycles for the state permutation induced by . Léf MPW ()
be the maximum period of wire-cycles for w, and MPW(m) be the maximum period
of state-cycles induced by m. Then W(w) is a sequence consisting 6f e“(i) i's
in non-descending order, where i =1, 2, . . . ,MPW(w). Sp(n) is a sequence
consisting of 6;(i) i's in non-descending order, where i =1, 2,. .,.,MPS(N).
Note that subscript p of S denotes that signals are from Jp.

Example 1. Let m be (1, 2)(3). Then W(m) = (1, 2) and Sz(ﬁ) = (1, 1,

1, 1, 2, 2).

A.modulo—pblinear sequential network is composed of arbitrary inter-
connections of three kind of elements (1) unit delay elements (2) modulo-p
adders and (3) modulo-p scalar multipliers, where the delay:elementé are
separated out from the combinational logic. Any wire in such a network is
capable of being, at each instance of tiﬁe, in any one of p states represented
by the digits 0, 1, 2, . . . ,p—l; A cyclic state generator construéted from
PERMU(N) can be considered a special type of autonomous linear éequential
networks such that neifher modulo-p adders nor modulo-p multipliers are used
in the network. Therefore, some properties concerned with cyclic state gene-
rators can be derived using matrix algebra as various authors have studied
for linear sequential networks (Booth[3], Elspas[5], Zieler[8]). Although
the matrix algebraic approach is wvalid, it is usually inefficient for our
purpose. Since the structure of the cyclic state generators is very simple,

it may be better to devise an individual method for solving each problem
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concerning the cyclic state generators. We shall give results without their
proofs. The reader may find the proofs in [4].

We define PN (N=1, 2, . . . ) as follows: FN = {ﬁal’ . . ,ar)[ r is

an integer, aik(i =1, .,. .,r) is an positive integer, :E a; = N, and for
] ' i=1
each i (1 < i < r-1) a; < ai=l}' From the definition of W(w) the next pro-

position is immediate.

Proposition 1. For any N (N > 1) FN = {W(m) l 7 is a permutation on

{1, . . . ,N}}.

Proposition 2. Let m be a permutation on {1, . . . ,N}‘exp:essed as the

A

product of wire-cycles a 50y 5 where the period of o, is LA 1 i< k).

1’ -
Then the maximum period of state-cycles induced by 7 on PERMU(N) is LCM(w,,

o e ey wk); where LCM(Wl, .. .‘,Wk) means the least common multiplier of

1’ '
‘The next proposition is immediate from Proposition 2.

"Proposition 3. ’{Sp(ﬂ) | = is a permutation on {1, . . . ,N}} is a proper

subset of Ft,'where t = pN and N > 1.

We now define equivalence relations on permutations induced by wire-—
sequeﬁces and state-sequences respeétively as follows:
(l)’ m and T' are equi&alent under wire-sequences if and only if W(w) =
W(W');
(2) mand 1' are equivalent under state-sequences if and only>if Sp(ﬂ)
= Sp(ﬂ').
We conjecture that the equivalence relation defined by (1) above is the
same as the equivalence relation defined by (2) above. At present we can
only show that the equivalence relation induced by wire-sequences is g/refine—
ment of the equivalence relation induced by state-sequences. That is , we

have the next theorem.
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Theorem 1. Let 7 and m' be permutations on {1, . . . ,N} respectively.

If W(r) = W(r'), then Sp(ﬂ) = Sp(ﬁ').

We do not know at present whether there exists a pair of permutations
m and 7' such that W(m) # W(r') but S(m) = S(n'). We shall give a necessary
condition that for a pair of permutations 7 and ©' on {1, . . ) ,N} Sp(ﬂ) is
equal to Sp(ﬂ').

Let o and B be length-N sequences of integers from Jp respectively. If
o is obtained from 8 by applying‘an appropriate number of cyclic shifts, we
say that o and B are cyclic equivalent. Let CP(N) be the set of‘iength—N
sequences of integers from Jp such that their cycle period is N, and let
E;(N) be the set of cyclic equivalence classes of CP(N). #E;KN) denotes the
cardinality of E;(N). | /

‘Example 2. C,(1) = {0, 1}, C,(2) = {10}, C,(3) = {100, 110}, C,(4) =

{1000, 1100, 1110}, E;(S) = {10000, 11000, 10100, 11100, 11010,:;1110}, where

each equivalence class is expressed by its representative member.

Theorem 2. Let W(m) be a wire-sequence consisting of m components, and
let the number of multipliers of q .in W(m) be r, where q is a prime integer.

Then the number of q in Sp(n) is pm_r((q #E;(q) + p)r - pr)/q.

Proposition 4. Let W(r) = (w,, . . . ,Wt) and W(n') = (wl', . e ,wu').

If Sp(ﬂ) = Sp(ﬂ'), the following two conditions are satisfied:
(1) t =u (i.e., the number of components in W(n) is equal to the number
of -components in W(r')).
(2) For any prime integer q, the number of multipliers of q in W(w) is

equal to the number of multipliers of q in W(w').

Unfortunately, the two conditions given in Proposition 4 are not suffi-
cient to be W(n) = W(n') for a pair of 7 and w' such that Sp(ﬂ) = Sp(ﬂ').

The next example shows this fact.
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Example 3. Let m and n' be a pair of permutations on {1, . . .,30} such
that W(w) = (5,5,6,14) and W(n') = (3,7,10,10). These two wire-sequences
satisfy the two conditions in Proposition 4. However, the number of 6's in

Sz(ﬂ) is 152 whereas the number of 6's in Sz(n') is 24 as shown in Table 1.

i Number of i's in Sz(w) Number of i's in Sz(n‘)
1 16 16
2 24 24
3 16 16
4 0 0
5 816 816
6 152 24
7 144 144

Table 1. Sz(ﬂ) and Sz(ﬂ'), where W(m) = (5,5,6,14) and W(r') =

(3,7,10,10)

We now describe an algorithm for computing #E;(k) for k =1, 2, . .
Suppose that a wire-sequence consists of a single component k. Then we say
its corresponding state-sequence to be 'simple" and denote it by SEQp(k).

Let 7 be a permutation such that W(rm) = (k). Then for a factor f of k
a state-cycle of period f for T is obtained by the following way: Choose a
representative element, say a in p-nary form, of an equivalence class of
E;(f). The k/f times repetition of o is allocated to input terminals in the
way that the i-th digit of the k/f times repetition of o is given to the
input terminal appearing at the i-th position in the wire-cycle for w .
Starting from this initial state a sequence of states appearing sequentially
on the cyclic state generator with 7 interconnection is a state-cycle of

period £ for m. Any state-cycle of period f for w can be obtained in this
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way. For an integer j which is not a factor of k there does not exist a

state-cycle of period j for w. We therefore have the next proposition.

Proposition 5. Let fl’ fz, . .. ,ft be all the factors of k. Then

sEQp(k) consists of #E;(fi) fi's (i=1, 2, . .. ,t).
Example 4. SEQ,(1) = (1, 1), SEQ,(2) = (1, 1, 2), SEQ,(3) = (1, 1, 3, 3),
SEQ, (4) = (1, 1, 2, 4, 4, 4), SEQ,(5) = (1, 1, 5, 5, 5, 5, 5, 5), SEQ,(6) =

, 1, 2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6).

Since the number of states which are expressed as k digits in p-nary form

k . -
is p , the next theorem is immediate from Proposition 5.

Theorem 3. > £ #C_(f) = p.k for k=1, 2, . . .,
flk P
where means the summation of terms for all f which can divide k without

flk
remainder.

From the equations given in Theorem 3, we can easily compute #E;(k) for

k=1, 2, . . ., Mébius function p(d, k) is defined by (see Berge[l])
1 if k = d,
_ it . _ , o
p(d, k) = (-1) if k = PiPy + ¢ - ptd, where the Py (i=1, . . .,

t) are distinct primes,

0 other case.
Then from Mdébius inversion formula (Proposition 2 in Rota[7]) we have the
next theorem. A.computef program for computing MOobius function is given in
(Nijehuis and Wilf[6]).

Theorem 4. #C (k) = ( :EE pd u(d, k)/k for any k > 1.
P dl k
Let Ip be the number of irreducible polinomials of degree k over modulo-p
" field. Then we have the following equations (Elspas[4]): :E: i Ip(j) =p .
ilk
Therefore, we have the next theorem.

Theorem 5. For each j (j =1, 2, . . .) #E;(j) is equal to the number

of irreducible polinomials of degree j over modulo-p field.
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3. Construction of State-Sequences

In this section we discuss the following problem: '"For a given wire-
sequence, construct the state-sequence that corresponds to the wire-sequence."”
This problem is mathematically trivial, and can be solved by the following
method: ''Choose a permutation m such that W(w) is equal to the given wire-
sequence. Then we construct all possible state-cycles for m by state-by-state
evaluation of the corresponding state diagram or the cyclic state generator
with m interconnection.'" However, this naive method is obiously laborious.
Although for any prime integer q, the number of q's in Sp(n) can be immedi-
ately evaluated by the formula given in Theorem 2, it seems to be difficult
to derive a general formula for evaluating the number of state-cycles of an
given period. We shall describe an efficient method for solving this problem.

We define the product of state-sequences, Let g = (al, e ,ar) and
B = (bl’ . . .,bt) be state~sequences that are not necessarily simple. The
product of o and B is denoted by axX f which is defined as

SORT((alxbl), (a1><b2), e e ,(aIth), (a2><bl), o o . ,(a2 )(bt),,

o e e ,(ar)(bl), e e . ,(arth)),
where for a pair of positive integers A and B (A XB) is a sequence of
A*B/LCM(A, B) times repetition of LCM(A, B) and SORT(dl, e e . ,dm) is the

sorted sequence of d ,dm in non-descending order.

1 c -
Example 5. (LX1) = (1), (1X2) = (2), (2X3) = (6), (4X6) = (12, 12),
(10X15) = (30, 30, 30, 30,30), SEQ,(1)XSEQ,(2) = (1, 1)X (1, 1, 2) =

a,1,1,1, 2, 2)

It is obvious that the product of state-sequences is commutative and

associateive (i.e., aXx B BXa and o X(B X yv) = (o X B) X¥Y).

Theorem 6. If W(m) (w,, w

1> Yoo .,wr), then Sp(n) = SEQp(wl) X

SEQp(WZ) X. .. XSEQp(wr)°



121

.

Example 6. Let mo= 1, 2, 3)(4) and m, = (1, 2)(3, 4). Then W(ﬂl) =

(1, 3) and W(Wz) = (2’,2)f‘ From‘Theorem 6f Sz(wl) = SEQZ(L)X SEQ2(3) =

1, 1)X@a, 1, 3, 3) = (@1, 1, 1, 1, 3; 3, 3, 3) and Sz(ﬁé) = SEQ2(2)>(SEQ2(2)

=(1,1, 2) X1, 1, 2)=(@1, 1, 1,1, 2, 2, 2, 2, 2, 2)."

1)
(2)

(3)

4)

(5)

(6)

(7)

(8)
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