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Extensionality

In this chapter a characterization of the condition of wealk
extensionality is given in terms of the concepts of extensional
subsets.

DEFIMITION 1.1. Let M= (X, .} he a groupoid and 8 C X.

Thern 8 iz called extensional if
Vay b €5 (Vo &€ Xo ac = he ) = a = b.
DEFINITION 1.2. For a paé M= (X, .. A?},
Y e s
Fie = ¢ (A*x. Ap 1 A € T, » € vars, p € vals 3.
THEOREM 1.3. Let Jl be a pAA.  Then Mis weakly extensional

iff F”?is extensional.

From lLambda PModels to Cartesian Closed Categories

"~y

2.1.  Retracts b? lmmadelg

in this section we introduce the notion of retracts of
memdals and  prove that “the set of all retrracts forms a
cartesian clozed caltegory (. C. C.).

Let Tt = (Xa wa A*) be a fixed A-model throughout this
chapter, and we shall wite F instead of Fm.

FROFPOSITION 2.1, F is extensional.

REFINMITION 2.2. For a, b € X,
(i) a . b o= (A%, Calepn)p,
(ii)  a = b = (ATuy. cp i (egy) ) 2p,
i) i o= (AN sp

DEFIMITION 2.3 (1)  An element r of X is called a retirract
if r e r = r. |

{(ii) Ret = £ r € ¥ | r is a retract. .
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In this chapter, r, r , «as denote arbitrary retracts.

DEFIMITION Z2.4. (i)  An element a of X is called to have a
type r, notation a @+, if a = ra.

{ii) HET(rlﬁ rz} = L day e g ba s, .

tiii) A = U(p, r;) € Ret » Ret FRET(r . rp)s:

{iv) 7 iz a partial binary operator on A such that
(1) b oy, et day, 1y, rpr is detined iff ryg o=
(2) by 1. gk o7 “a, "y rz} = 4h o &y o rgﬁ.

() i is & function from FRet ta.A such that 1) = <y, r, r-.

(vi) RET = (Ret, A, 7, i).

THEOREM 2.5. The structure RET.iE a category.

In the rest of thise chapter we shall write a and b . a
instead af TR r2} and “he T
respectively if there ococuwrs no confusion.

DEFIMITION Z.4. (i) 1 = (A*x. i)p.

(i) e = 1y 1y 1=,

I
'f’:’e

(idi) T

M
>
<
<

(iv) F

(v) a = b = (A'uy. y (g (xT)) (ep GF) ) p

I

{(vi) (A?x, ca(xT))P.

Pab

it

(viid)  agy (¥, CpF))p

juy

(viii) <a, br = (A*uy. ¥ (£g3) (€30 )p

{13 €ap = (A*x. cb(xT(ca(xF))))Fu
) *

(307 at = (A*uy. ca(l Ta ZTHYIIPp.

ke can show that 1. (r' b ) and

Tar pr;rzﬂ ‘qr'vg

{1, =» -

i 5 ET,Y;) are a terminal, a product and an exponentiation

of two retracts "y and g s respectivel yv.
THEDQEM 2:7a The structure

RET = (H"E'*\"_gA, P o VN « TR« O - PR }ois a . €. Ca



«Z2. A Reftlection of the Category of Retracts
Im this =section we show that the groupaid (X, .) can be

seemed as a induced groupoid of some reflection of the c. o. .
RET.

First, we  define the notions of reflections and their
induced groupoids.

DEFINITION 2.8. Let the structure
C= (@ A, =, 1. 1. ' *e Po G < ¥2 e &, 7)) be a c. c. c.

= C(1, a.

(ii) A triple (r, f, @ with r €C, f € Cr = r, r}

~r
=

(i} For & € Cy

and g € Clr, r =) is called & reflection if

l~ e of
(1) Cardi{r) > 1,
(= R
Vs g e i .I.r_)r-
(iii? The induced agrouwpoid of a reflection {(r, ¥, Q) is a

groupoid (?, ¥)o where a ¥ b = eppiga, bx for each a and b in ?;
FROFOSITION 2.9. A triple (i, i =i, 1 =21)
is a reflection.
DEFINITIOMN 2.10. The function 9 : T'—ax ig defined by
Pia) = ai for each @ € 1.
THEOQOREM 2.11. The function ? is an isomorphiem.
Identifving all the isomorphic structwres accarding to the
custom in algebra, we can s=um up the results of this chapter in
the following.
COROLLARY 2.12. Faor a groupoid Jt. i M can be made into a
A-model, then Mi= the induced groupoid of some reflection of a
Co Cuo G

The converse of this corcllary will be investigated in the

next chapter.
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Fraom Cartesian Closed Categories to Lambda Models

Z.1. Y~theories and Cartesian Closed Categories

In this section we introduce the eguational theory ¥ as a
tool of studying syntactic aspects of c. Cc. ©.

DEFIMITION Z.1. (i) A clase of primitive tyvpes P is a
non—trivial class with an initial type 0 € F.
(ii) The class of types over a class of primitive types F,

notation Tpr or Typ, is a class inductively defined by
(1) FC TYDPy
(2) ty, t, € Typp ¥ (b = ti} € Typps
() ty. t, € Typp ® (t) D t,) € Typp{
In this section t, t',c., dencte arbitrary tvpes in Tpr.
DEFIMITION Z.2. (i) For each t € Tvyp. VaFEt is a given
countable set such that ty = t2=$ Varstl(\ Var5t2== Q.
{(iiy | *Jara‘ = Ut eTYPVa”r*E “
DEFINITION 3.7%. (i) The class of Y-terms c:vef F., notation
r% or rz is a classe expressed az a diszjoint union of sets of the
form [p = U'-:l"P (By, ) 1 ty, ty € Typg 3, w,her‘fe»r?(f” t,) is
the family of minimum sets satisfying the following nine
conditions;
(1) varsy C Fpu::», ), ) Iy € I"Pc-t_. t), (3 04 € Mptt, o,
() Fyp € FPH:‘ W otgs ty). (5) gy, € F‘Pu-_‘ Mty ta)
(6) Ey ¢, € l"'P((tl =>t,) M oty. ty), |
(7 A € r;(t‘y ty) and B € r}(tz, tg) =2 (BEA) € r}(t!, tgls
@ A €Tptty, ty) and B € [pity, ty
D <n, B> € FPH:, .ty ¥ ty),
(%) A € r'P(ti # tg. tg) at e F'P(t‘, £y Pty

{ii) It, Ot’ Pt,tz” @t;tz. and Et‘tl are called constant
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symbal .

(i) Let A, B o€ [,

¥ —formul a.

(1) et

A
syntactic equality.

A, B,... denolte

which does not cause any

al”

t,). Thern a form o= R 14

called 5

2 3
and B bhe ¥-terms. Then a notattion A = B denctes

bitrary Y-terms, and all the subscripts

ambiguity will be omitted.

DEFIRITION 2.4, (i) The formal theoﬁirlﬁover F i= an
equational theory on F} whose axiom schemes and deduction rulecs
are the followings:

(1Y A = Gy ) {(ARYC = A{REY,
(=) I = &, 4y Al = A,

5y A= Ut for A € rWtJ 1Yy, (5)  F<A, Br = A,
(7 Qfy, Beo= B, (8 Fa, BA> = A,

(9) E6A+P, O = @, £10) {(E<AF, o=t = A,
(11D A =R n (12) A=k, B =C "
B =0 A=
(13) A= C, B =D . (14) A =C, B =0D P

AR = CD “A, B> = <O, D=
(15 A = B “
At = m¥
(i1 A notation Y A =8 is defined as usual.
{1112 For A el“, Fuigy € Vars is the set of all variables
coowred 1n A

{1V

Y-term cbtained by substituting all

AT 1)

DEFIMITION

kx. o €7 w £y, 1,

m

(1) K. £,

Faor A € rx R 3

) 1

and B € [0, t), Alx:z= B is the

Ve e

the in A by E.

€ and A e [t

Yaur e

¢ t.),

Far 2
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defined by
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(2 He ¥V OE P if ow $ v € Vars,

(75 we O =2 LCP it L is a constant symbol,

k

k
£4) k. AR B (kx. AY<kx=. B, =,

(5 k

K

&) Kx. AY = (k. ar<sPR, BE, GRS,

tii> For x € Varsy and A € Mity, ty), Ax. A€ r'u-;B_, £ty

) . +
ie defined by Ax. A k. A .

)]

The following theorem is called the functional completeness
tﬁ@mrem for the theory Y.
THEOREM 3.6. For A € [Tttg. t,0. « € varsy
and B € [Tto, )7,
(i) FVQRAx. A) = FV(m - { x 2.
(tiiy ¥ F Etntf-’\}"’ A, }mtszz- = Alur= RI1.
et ﬁ = (O, A,i P i5 1o Ve . Pa Qu ow Fa TP, ey *) he a
fived . c. c. in the rest of this chapter.
DEFINITION 3.7. (i) P = { t 3 = Q.
{ii) Me write ta instead of (t, al).
(iiiy O = t4  flinitial type).
FROFDSITION Z.8. Fis a class of primitive types,
DEFINITION Z.9%. (i)’ Typt_= Tpr.
(i1) Far t € Typ,, t € € is defined by
(1) E'a =a, (I t, mt, = t, ::-::?;, (I T, »t, =t = t,.

DEFIMITION 3.10. (12 The class of extended ¥—terms aver

CF notation Cg,i: a class edpressed aszs a disjoint union of sets
of the form r‘t =Uc ety ty 1 b, t, € Typ, 3, where
r%ﬁt‘, tz) isz the family of minimum sets satisfying the

fbllawing;

(1) varsy G Pt(‘:”' £) (variables),
(2y  f & ti;lﬂ Ez) é'cf € r_‘t(t‘,l ty) (constant symbols),
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(2 a €lptt;, ty) and B € [ptt,, ty) = (BA) € Q(t,, ty),
4y A € T’t(t,, t,) and B € Qtt,,, t g0

= <p, Br € ]"Cr.t, s oty W Eg),
= A €t wt,, £t 2 e (et £, 2ty

{11) = P = - = ames 'f: i.-q !-..' -
(11i) It’ ’CIt,, Ft,tlf’ Qtltl aricd E'T,;'Cz_ are names o % e p.‘:| X

qa-— and e{‘{_z, respectivel v.

DEFINITION 3.11. (i) function P : Vars -9 A is called a

I

valuation in € if it satisfies » € Vars g = P € Cii, .

(ii) For & € Pt and a valuation P, the interpretation of A in t

under )°,, notation [1513;’ or E'ﬁ]f,,. is defined by

(1) [x15 = PGO if x € Vars, (2 L‘c:f];’ = f,
() mmg’ = Em;’[m‘;%,. (4)  r<A, E:Ik-}?: -::umf, EBJ%::-,,
(=) [A"']F’ = ([A:l%)*‘.

DEFINITION Z.12. Let A, B € l"t and P be a valuation.
(i) C. P taAa=R iff m:&f,’ = EBJ;’.. : )

tiiy L ra =18 iff C.l P ta=R for every valuation P..

DEFIMITION 3,173 The extended \[—theory aver f,,, notation

)’(f,)_. is the extension of the theory ¥ obtained by wvalidating
the axiomschemas and rules alsn for terms in r'(/.'
The falic:xwing is the key theorem to understand the relation
between §~theories and c. c. C. |
THEQREM Z.14. For extended X*"l?.@l"mﬁ.% A and F*..
Y ta=8€ A= H
DEFINITION 3.135. Motations FYiAY, Alx:= Bl, Kx. A and
Ax. A are extended for tEHf'mE; in Pl’/ reasonably. |
Theorem 2.4 remains valid for the them“,ﬁ Y(C).
THEOREM Z.16. For A € [p(ty, t,), x € varsy
and B € PL(‘:’-‘ tp), €r Etltz-::l:-:. Ay, BOy > = Alx:= BI.

This theorem is a generalization of the result of Lambek

e =



[Lam7471.
DEFIMITION 3.17. C i= @wemtenﬁianal if
for all A, B € l’"‘t and » € VYars, € ta=mn D€ rAs. A =Ax. E

-3

b
3o al.

. Retlections of Cartesian Clased Categories
In this section we show that the induced groupoid of any
reflection of . c. ©c. can be made into a p?\fl‘;.,
¢ . . 'ﬂ-
et (r. f: q) be a fized reflection of C, and (. %) bhe the
induced groupoid of (r. £, glt.

DEFINITION Z.18. (i)

M
r-’-

(iiy R = PC“:’-" t).
{iii? F = Cf'
(iv) 6 = cg.,
(v) For A, B E€R, A ¥ B = Eyq BA, Ex.
In this section A, B,... dencte ar‘bitr’aryextendéd Y-terms
in R,, and M. V... denote arbitrary variables in Var‘gt; '
DEFIMITION Z.19. (1Y A’x. A = FQ. A).
(1) ATy eeenpe A B A (A% Goan (st A)auud)

(iii) ko= [RO:-(y, :-:]P.,

i

{iv) 1 [AO:-:yz. 2 0¥ = ¥ (y X z)]p.
(v) For A € T(?, ) and x € Var‘s:‘-,t,
Ane A 67(?;. ¥) is defined by
(1) l":—:.. B Cekk® (2) A'x. y =B LY if oy # Ha o,
(3 AT, Cp B Cgs 4y A'x. AB B cg(ATx. A (A% B).
In the rest of this section, Mdenotes (;r,, X, A7),
THEOREM Z.20. Nt is a paAA.
For making Y into & A—model, it is sufficient that Fmis
extensional by 1.3, We shall prove that the condition of

gw‘c@xtenﬁ;icznality is sufficient to make Fmez-:t@na-;ic:inal in the
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next theorem.

THEOREM

Sa.21.

-extensional Ca

Cw

Thi=s theorem

~

converse of Z2.12.
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