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Introduction

Among many language defining mechanisms, sequential rewriting
systems, or grammars, and parallel rewriting systems, or L systems,
are the two major ways to generate the words of a language system-
atically. Many comparative studies of the generative powers
between the parallel rewriting systems and the grammars have been
investigated. It is already known that the family of languages
generated by OL systems, i.e., interactionless L systems, and that
of context free languages are mutually incomparable [1,6].

In fact very simple OL systems can generate non-context free
languages, e.g., let S=<{a}, T,a) where 7 is a homomorphism on

2, then the language generated by S is

a* given by T(a)=a
L(S)={af[ i0}.
Several works have been done to answer the questions why some
of the parallel rewriting systems can generate such rather compli-
cated languages, or conversely, which parallel rewriting system
merely generates a context free or a rational language.
Lindenmayer [4] showed a sufficient condition for a 0L system to

generate a context free language. Kral [3] showed a similar condi-

tion for an iterated substitution which generates a context free
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set. Herman and Walker [2] characterize context free languages witl
0L systems through "adult" concept; i.e., a word w is adult for a
OL system if the descendants of w produced by the OL system con-
sist of w alone. Nishida and Kobuchi [5], and Sakargvitch,
Nishida, and Kobuchi [7] introduce a recurrent word which is a
generalization of an adult word; i.e., a word w 1is recurrent if
it is a descendant of any of its aescendant. Clearly an adult word
is recurrent. It is shown in [7] that there is the same chatacteri-
zation of context free languages using iterated substitutions‘énd
the recurrent concept. |

In [7] it is also shown that the set of recurrent wérds for’a
rational (resp. context free) substitution is rational (resp.
context free). That is, for any parallel rewriting prdceés, the
set of recurrent words is not parallel any more. In this paper we
will show that the same statement is valid for the widetvsét of
words which contains the set of reéurrent words properly,leeifitst
define repeatable word, i.e., a word w - is repeatable fo;’a sﬁbsti
tution if it is a descendant of itself. Needless to say é recurren
word is repeatable. Then we will show that the éet éf répeatable
words for a rational (resp. context free) substitution is rational
(resp. context free). We will show our result with a similar metho
to that of [7]. Hence we omit the details of some technical lemmas

the reader shouldrefer to [7].
1. Preliminaries

Let 3 be a nonempty set, called alphabet, the elements of

which are called letters. The finite sequences of letters, called
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words, together with the operation of concatenation form the
free momoid generated by Y, Y'* ; the empty word, denoted ’by 1,
is thevi’dentity element of %*.

A subsequence of a word s is called a sparse subword of s
or, for short, a subword of s. Th»e length of a word s is,
iby definition, the length of the sequence s and is denoted by

\s[ ; if }V' is any subset of J, ‘s!v denotes the number of
occurrences of ietters of V in s. We denote by T(T,) the
péwer sét of Y. The structure of monoid of \'* extends to the
power set {(Y*) by XY=*{~xylxe>X YQY} for any subsets X and
Y of 2*. We dentte by >card(2) the cardinality of the set Z

‘ A:multivalued mapping T: E*_)@* is a substitution if it

is a “Hdvn‘iomorp'hism from Y* into {(@*). Thus a substitution
is cts»xﬁpieltelj} defined by the family of sets k’r(a)faé_z} and we
hsVe » "'V((l)j=.l.'b iAs any relation, a substitution T: E*_;@* is
"’eiétéi;lided .addi‘;’t‘ive]‘.y to (T*) by T(L)=;%JLT(f) for every L
in P(M) . B

Uﬁless otherwise stated, ’we treat in this paper substitutions
T: 2*_52* an!d we cali such T a substitution on. 3*.
In this case 'Vs.re define for every’integer n the products
‘Cﬂ+1=T(,Tn) to be those of relations ; these products are again

substitutions. We shall use the following notations :
T*= kgotk and T= T(T*), where TO is the identity mapping
of 7y*.

Let u=X;X,...%, x,€0 and v=s;s;...5 S;€* be
two words. The word v is said to be a descendant of u if

v belongs to  TMu) for some positive integer n. The

derivation § from u to v is an {~tuple of pairs
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O=((x1,81),(x9s8)) ..., (xp,8)) where s e T'(x;) i=1,2,...,L.
A substitution T on ¥* is said to be finite (resp.

rational, context free) if for every a of Y, T(a) 1is a

finite (resp. rational, conteXt'free) subset of y*.
In the litérature on L-system a pair (Z,T)r is calléd a 0L-
scheme if T 4is a finite substiﬁution’on E*; |
Let alph be the function from $* into (L) defihéd
as follows : for any word £ in Y¥, alph(f) is the smallest -
subset S of ¥ such that £ 1is in S*. The canonical additive
extension of “alph is thus a function from £(y*) . into fﬂg).

Let T be a substitution on '£*. 'The alphabetical projec-"

tion of T, denoted by ‘K, is the mapping from ¥ into jbqp

defined by : : ' g S s
¥r(a)=alph(t(a)).

The canonical additive extension of 'ﬁ('is a function from ‘9%25*}

into itself and‘is'again denoted by *T‘

DEFINITION : A substitution T on ©%* is said to be alphabeti-

cally stable (or stable for short) if the following two conditions

hold :

ii) For every a in ), if 1 is in q'(a) then 1 is in Te)

PROPOSITION 1.2 [7] : For every substitution T there exists an

r

integer r such that T 1is stable.
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2.. Repeatable words

DEFINITION : Let =< be a substitution on y*. A word w of

T* 1is repeatable for T if it is a descendant of itself, i.e.,

we’ﬁlw}. We denote by P(t) the set of repeatable words for T:
Plo={w|lw ettw)]},

From the above definition a repeatable word u has at least

one derivation & from u to u. If u=x(xX;...X, and

S=((X1rsl)'(Xlrsi)'°°-l(X215£)) then u is factorized into

u=sySy...sy. We sometimes call this a factorization by &.

Let R(T) be the set of recurrent words for substitution on
E* [5,7]. That is, R(T)={w€§‘)*] W ft*(f) for any f ¢ ’[f“(w)}.
Then it is clear that P(T) DR(T), and that a repeatable word is
a very natural extension of that of recurrent words.

The followings are immediate consequences of the definition
and have the corresponding version for recurrent words in [7], so

we omit the proofs:

LEMMA 2.1 : P(t) 4is .closed under product.

" LEMMA 2.2 : For any positive integer n, P(T)=P (7).

3. Classification of letters

DEFINITION : Let <1 be a substitution on w*. A letter x of

T, is said to be vital for T 41if 1 1is not a descendant of x,‘




291

i.e., if lé TT(x). We denote by *V the set of vital letters.

The set of non-vital letters is denoted by N, i.e., N=2,\V, or
equivalently, N={§|l € T&(x)}.

PROPERTY 3.1 : Let wu=x4Xj...X;, X €L be repeatable word. Let

8=((x1,sl),(xi,sz),...,(x&,sﬁ)) be a derivation from u ES

u. Then

1. If Xy is non-vital then lsi‘ =0.

2. If x4 is vital then x; is the only vital letter contained

in Sq-

DEFINITION : Let T be a substitution on 3*. A letter x

in 3, is said to be cyclic if there exist two words s and
t in N* such that sxt is in ’tﬁx). The set of cyclic

letters is denoted by C.

DEFINITION : Let T be a substitution on 2*. Let < V: be the

set of vital letters for T. T 1is said to be vitality preserving

if for any x in Y and any u in T(x), {u{v=\x|v.

Let T Dbe a substitution on »*. Let V, N, and C the set

of vital, non-vital, and cyclic letterg for T, respectively.

Consider the mapping ~’/ on (NUC)* defined by

T/ (x)=TUX)\ T*VT*Vy* if xec(\v,

TNx)=T(x)\ T*V* if xe¢N.

It is easily seen that T is a well defined substitution on
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(NUC)* and T’ is vitality preserving. We call T the vital-

ity preserving substitution of 7. The following is an immediate

consequence of Property 3.1.

PROPERTY 3.2 : P(T)=P(T’).

That is, we may also assume, without loss of generality, that

T 1is vitality preserving to compute the set of repeatable words.

LEMMA 3.3 [7] : Let T be stable substitution on §*. For any f

is a subword of s

in C* there exists a word s such that £

and s is in Tk(f) for every positive integer k.

COROLLARY 3.4 : Let T be a stable and vitality preserving

substitution on E*. For any x 1in C and any positive inte-

ger k

x)C Tk (x) .

4. Letter position function

In this section we define a letter position function,
which turns out to be very useful in the following discussion.

We characterize the letters which appear in a repeatable word

using the letter position function.
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DEFINITION : Let U=x;X;...% X, €L be a repeatable word for
a substitution T on T*. Let §=((xy1,81),(xy,8;)s.-+s(xy,84))

be the derivation from u to u. The letter position function

o 41,2, .., {1,2,...,Lg for § is given by (i)=]

where Xi{ 1s contained in Sj.

Informally, ¢ indicates the ancestor of each letter of u
in the derivation ©. It is very important, although obvious
by the definition, that ® is a non-decreasing function on

the integer interval [1,£]. Then we have

PROPERTY 4.1 : Let « be a letter position function.

® has at least one fixed point, i.e., there exists an i

in {1,2,...,¢} such that oa(i)=i.

DEFINITION : Let u=x;X;...X, be a repeatable word. Let
0 be the letter position function for a derivation & - from

u to u. Then x; is said to be repeatable in u if i

is a fixed point of .

LEMMA 4.2 : Let u=x(X,...¥Xy be a repeatable word. If x; 1is

vital then x; is repeatable in u.

Proof : Let & be the letter position function for a derivation
® from u to u. Let x;{ be a vital letter and let &(i)=j.

From Property 3.1.1 x; must be vital. And then, from Property

J
3.1.2, we have i=j. |
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There is a very closerelation between cyclic letter and

repeatable letter in a repeatable word. 1Indeed we have

PROPOSITION 4.3 : If x; 1is repeatable in u then x; 1s in

C.

Proof : Let s; ©be the segment produced by x: in a derivation

1
from u to wu. Then, from Lemma 4.2, X; 1s the only possible
vital letter in s;, even if s{ contains any vital letters.
Therefore, for some words f and g in N*, we have s, =fx;g

and s; is in ’kai). |

5. Characterization of repeatable words

DEFINITION : A repeatable word u for T 1is said to be elemen-

tary if u#l and any factorization u=u;u, for repeatable words

u; and uy implies ui=1l or ul=l. We denote by Pl(T) the

set of elementary repeatable words for T.

PROPERTY 5.1 : P(T)=(P4(T))*.
Proof : P(T)D(P,(T))* is obvious by Lemma 2.1. P(T)C(P{(T))*

directly follows from the definition. [

LEMMA 5.2 : Let u=x4Xy...X, be a word in P4 (7). There exists

one and only one i such that X3 is repeatable in u.

Proof : Assume there are exactly two cyclic letters X{,Xj(i<j)
for a letter position function . (We can show the lemma

similarly in case there are more than two cyclic letters.)
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As 1 and j are the fixed points of &, there exists a positive
integer p and an integer k i¢k<j such that |

(i if 1¢n¢k
m?(n)= S

j if k+1<ng@.
That is, ty=x;%;...x, is in ffoi) and ty=%X i1...X, is
. + . i . .
in Tj(Xj). Since u=t ;t, and u is in T*(u), tq is in
+ . >
T (ty4) and t, 1is in 'f%tl). Thus t; and t, are repeat-

able. This contradicts the fact that u is elementary. O

The proof of the above lemma also shows

LEMMA 5.3 : Let u=x4X9...%X, be a word -in P4 (7) and\gxi;,

be repeatable in u. Then u is in I*(xi).

PROPOSITION 5.4 : Let T be a stable substitution on F*. Let

C and N be the set of cyclic and non-vital letters for T,

respectively. Then

Py () C U, (THRINN*3N*)CP (T) -
xe Lo
Proof : The left side inclusion is a corollary of the above
Lemmas. Let u be a word in T+(xM7N*xN* for some x¢C. Then

u is written as u=sxt for some st in N*. Since T 1is

stable, 1 is in T(st), and hence u is in 7#(5Xt)=’tﬁu). Al
COROLLARY 5.5 : P(T)=( U (THx)NN*xN*) ) * .
xeC

Next we will give an effective finitary description of

-10 -
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U (xH(x)\N*xN*). We need some additional definitions.
red
Throughout the remaining of this section let T be a stable
and vitality preserving substitution.
For any x 1in C let CX, be the set defined by
3
CL={yl3yo,yi,...,yheC such that y,=y,=x "k y =y and
. N 3 L . . e )
for any i 0<i¢n s, 1t €N* sLyth(T(yL’\)}-
Let Dy /ExsGys and H, be the sets defined by
E1=alph({g‘aféN*, ay,zéC}_fygé’C(z)k)
H,=alph ({£| Igen*, Jy,z¢C, fygewz)})
Dy =Y. (E )ANAC

Gy=Ur (HONN[C.

PROPOSITION 5.6 : There exists an integer n such that for

every x in C

+ N
TUx)\N*xN*="T (G:xDi)ﬂN*xN*.

In order to prove this Proposition we establish two lemmas,
which can be shown quite similarly as in the proof of the corre-

sponding results in [7].

LEMMA 5.7 : Let x be a cyclic letter. For any word £xg in

G§XD§ there exists a word sxt in ‘fﬁx) such that f£fxg 1is

a subword of sxt.

LEMMA 5.8 : There exists an integer k with the following prop-

erty : Let x be any cyclic letter, sxt any word in T* (x)NN*xN%

_ll_
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and ¢ any letter of s (resp. of t): if i i ‘
)i if ¢ is not in -‘,U,C,(GX)
4(resp. in %éDX)) there exists a word uxv in .’ﬂﬂx)ﬂN*xN*

such that sxt=s’uxvt’ and c¢ does not occur in s’ (resp. in t))

Proof of Proposition 5.6

We first prove that

T(Grx DF)C Th(x)

for any cyclic letter x. Let fxg be any word of G;XDz.
From Lemma 5.7 there exist an integer k and a word sxt —such
that fxg is a subword of sxt and sxt is in’ﬁ%x). Now any
descendant w of fxg is a descendant of sxt and thus of x.

Conversely let w be in ~T(x)\N*xN* : there exist =z 1in
‘le and s,t in N* such that w is in =% (szt), i;e;,'there
exist two subwords f=a,a2...aTD and g=blbl...‘bCl of s- and t

~respectively and a factorization w=slsl...spuyvt]tl...tq_ such

that Si is.in - x(ai), ?f in Tﬂbj) for every i and Jj, and
uyv is in 7T(z). If all the a;'s and the bj's are in Y(Gy)
and ,(D,) respectively w is in t?{GixDi). If it is not

the case it follows from Lemma 5.8 that there exists a factoriza-
tion szt=s’u’zv’t’ such that all the a; occurring in s’ are

in ¢, (G,), all the bj occurring in t’ are in Y (Dy) and

uzv is in ~1K(z). Then w is in Tk”‘€2xﬂi>~ O

THEOREM 5.9 : The set of repeatable words for a rational (resp.con-

text free) substitution is a rational (resp.context free) set.

-12 -
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Proof : The families of rational languages and context free

languages are both closed under union, intersection with rational

set, Kleene closure, and substitution. Then the theorem follows

immedeately from Corollary 5.5 and Proposition 5.6. L[]
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