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1. Introduction

In this paper, we define the mnmulti-layer logic for
relational databases, an extended many-sorted 1ogic, abd discuss
implementation of a relational database system based on this
logic. The system is termed SBDS-F3 (Structure Easedlgéduétion
§ystem-§prtfan version 3).

Query languages based on the predicate calculus have séveral
advantageé ,€.8.
(1) permit a user to request the data by its values ;
(2) provide a useful way to derive the facts defiﬁable by using
general axioms together with the facts stored explicitly‘in

a database ;

(3) allow the database system to optimize execution of queries
However, it 1is pointed out that this class of languages
suffer from 1lack of expressive power. Query features for

relational databases are categorized as follows.

(1) mapping : data values of a specified attribute associated
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with a known data value for other attribute ;

(2) selection : entire record values associated with a specif-
ied key value ;

(3) projection : data values of a specified attribute, domain
or relation ;

(4) restriction : data values that satisfy given conditions ;
(5) wuniversal quantification : data values that corresponding
to all the values of a specified attribute or domain ;

(6) arithmetic function : e.g. +, -, ¥, 2+ ;

(7) aggregation function : e.g. average, minimum, maximum ;

(8) group by : grouping of data values with a common domain
value ;

(9) composition : composition of (1) to (8).

In the first order predicate logic ( whether one-sorted or
many-sorted ), domain(s) of variable(s) and/or constants are
fixed during the interpretation of formulas. This means that
only domain-element relations can be described in this logic.
Thus, queries classified into (7), (8) and (9) are difficult to
be described by languages based upon the first order predicate
logic. So far , various approaches have been proposed for
extending the expressive power of query languages based on the
predicate 1logic. For example, E.F.Codd [5] wused built-in
functions to manipulate functional operations. C.L.Chang [6]
proposed to introduce numerical quantifiers , special symbols
with the ad hoc meanings and procedural elements. S.Kuni-
huji [7] proposes the second-order m-sorted logic ( m>0), and
formulate the systax and the semantics of his logic by model

theofetic approach.
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But, as far as the authors are aware, they do not provide
systematic solution for the problen. The multi-layer logic
discussed here 1s a 1logic obtained by introducing a meﬁhod of
structuring types, i.e set, into the many-sorted logic. As the
result, this logic has enough descriptive power to express
practical queries which contain functions whose arguments are
grouped by some other variables and/or which involve nested
aggregation functions. This extension has some analogy to the
introduction of methods of combining types in a general-purpose
programming language.

In section 2, we define the multi-layer logic for the
relational database and prove some properties of this 1logic.
Section 3 discusses how to describe a query against the

relational database with a formula in the multi-layer 1logic.

Section 4 concerns With virtual relations and inference
algorithm for a query involving them. Implementation of the
algorithm 1s also referred. In section 5, we discuss the

algorithm which reduces a formula in the multi-layer logic into

a sequence of database access procedure.

2. Definition of the multi-layer logic

2.1. Syntax of the multi-layer logic

Definition. 1. The alphabet of the multi-layer logic for a

relational database query language is composed of the following
(1) variable symbols : x,y,...,X,Y,...;

(2) function symbols : f, g ,...
(3) predicate symbols : P, Q ,...;

(4) logical connectives and quantifiers : ~ ,& ,V ,— ,Z ,3 ,% ;
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(5) punctuations : /, [, 1, ", ( ,), comma ;
(6) £ruth symbols : T, F,
(7) domain symbols : I, S ,... ;
(8) set operator symbol : ¥

In the multi-layer logic , as is the case of the many-sorted
logic, it 1is assumed that there 1is a non-empty set I whose
elements are called base sorts. For each base sort i, there is a

non-empty set D .

Definition 2. A set J(I) of sort having a base sort set I, is

defined recursively as follows.
(1) If i€ I ,then i€ J(I).

(2) If i& J(I) , then 21 - {g) € J(I).

Definition 3. The sort of powerset *¥3 of a domain S of sort

j excluding the empty-set is 2% - {g}.

Example. 1. if S = {A, B}, then *3 = { {A}, {B}, {A,B} } and
= { {{A}}, {{B}1}, f{A,B}}, {{A},{B}}, {{A},{A,B}},

{{B},{A,B}}, {{ay,{B},{A,B}} 1}. If S is a domain of sort j,

%S

. j_
then *S and **S are domains of sorts 29 - {#} and 027~ {8} _ {z1.

Definition. b, Base elements of a domain are elements whose

internal structure is 1ignored except for the purpose of

identifying them.

Definition. 5. Level of a base element 1is defined as 0 , and
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level of a set of base elements as 1. If a level of a set S is

i, then a level of a set *¥3 is i+1.

Example 2. {{-3,4},{0,8,2}} is a set of level 2, and base el-

ements are -3, 4, 0, 8, 2.

Definition. 6. A term is defined inductively as follows

(1) a constant of sort j& J(I) is a term of sort j ;
(2) a variable defined over a domain of sort j& J(I) 1is a
term of sort j ;

(3) if ¢t .,tn denote terms of sorts jl,...,j and f is a n-

1’°° n

place function symbol from sorts jl,...,jn to jf,

f(t_ ,...,t ) is a term of sort j_, where n > O.
1 n £ -

then

Definition. 7. If XgoXqseeon Xy (n 2 0) are variables defined
over S, ¥3, ..., *n...*lS, respectively, then (ann/*n...*lS)
(Qn_lxn_l/xn)...(Qoxo/xl) is a prefix in the multi-layer 1logic,

where Qi (0Liln) 1is either ¥ or 3 . When n=0 , a prefix is

(QOXO/S), which is the prefix in the many-sorted logic.

Definition. 8. A formula in the multi-layer logic 1is defined

recursively as follows

(1) if tl,...tn are terms and P denotes a n-place predicate
symbol, then P(tl,...,tn) is a (atomic) formula, where n>0.

(2) if A and B are formulas, then so are (74), (A & B),
(A VB), (A= B), (AZB);

(3) if P(xl,...,xn) is a formula containing XqseeerX, as free

variables and x,,...,Xx_ are defined over domains S,,...,S_,
1’ n 1 n
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respectively, then (Qj_ xj /Si_ )...(Q; xi /Si JP(xy,...,%Xp)
171 1 n n n
is a formula, where n > 0 and i;,...,1i, e {1,...n}.
4 formulas are generated only by a finite number of applica-

tion of (1),(2),(3).

Example. 3. The formulas given below are formulas in the multi-

layer 1logic.
( JX/*N )C¥ x/X ) (PCX, a/*M ) & Q( x ) ) ;
(% m/M)CJI/AENDHCHF J/I )0 ((Fk/K ) QC a/I, £(J) ) &

P(m, j, k) = R(m J) ).

2.2. Semantics of the multi-layer logic

Definition 9. A structure o~ is as follows.

(1) a non-empty set I of base sorts ;

(2) domains Sj éf each sort j, where j &€ J(I) ;

(3) distinguished elements of Sj ;

(4) a set of n-place functions from X Sji to S¢ , where i =
T,eeoon , §; € J(D), £ € (D) ;

(5) a set of n-place predicates over the domains X Sj

i

Definition. 10. An assignment % from a formula G to the

structure is a mapping that satisfies the following conditions

(1) to each free variable in a formula G, we assign an element
oij ,jEJ(I);

(2) to each domain symbol in a formula G , we assign a domain
Sj,j(—:J(I);

(3) to each constant in a formula G is assigned to some par-

ticular element of Sj , J&E J(1) ;
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(4) to each n-place function symbol f in a formula G, we assign

a n-place function from X Sj to 3 where i = 1,...,n ,

£
j;€4), fedJdJ(I) ( if n = (;-, then we assign some par-
ticular element of S. ) ;

(5) to each n-place predicate symbol P in a formula G, we assign
a n-place predicate defined over the domain X S, ( if n = O
then we assign either T or F. ). &

Definition. 11. An assignment ¥ is similar mod Xqgeees Xy to ¥

if the assignments 1is same except for the elements assigned to

eeoeX o
Xl, n

Definition. 12. An interpretation of a formula G is an ordered

pair ( o—, ¥ ), where o~ 1is a structure for a given formula G

and ¥ is an assignment from G to o”.

Definition 13. The valuation of a formula G over the inter-

pretation ( o=, ¥Y) , i.e. val( G, o=, ¥ ), is inductively

defined as follows.

(1) If G 1is a propositional letter , then val( G, -, ¥ ) =T
iff P(G) =T

(2) If G is a n-place atom P( t t, ), then val( G, o7, v )

11
=T iff (P (e, ) )EV (Pt ...,t) )

(3) Let A and B are formulas. If G is of form ~A, (A & B),
(A VB), (A= B) and (A = B), then val( G, o~, ¥ ) = T iff
the truth table ( same as classical logic ) for ¥ (A) and
¥ (B) yield T

(4) If G is of form (3 x/S ) H(x), then val( G, o=, ¥ ) = T iff

)
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there exists an assignment ¥' which is similar mod x to ¥

and val( H, 0=, ¥ ) = T. That is, (3 x/S ) H(x) T iff

there is at least one element e € S such that H(e) T.

(5) If G is of form (¥ x/S ) H(x), then val( G, o, ¥ ) = T iff
for all assignments ¥' which is similar mod x to % and val
(H, 6, ¥Y) =T. That is, (¥ x/S ) H(x) = T iff for all
elements e @ S , H(e) = T.

(6) If val( G, 6=, ¥ ) # T , then val( G, o=, ¥ ) = F.

Definition 14. EQ(X,Y) : This predicate is defined over two

sets of level m (m>0) X and Y, whose base elements are ordered.

T iff X = Y.

For m = 0, EQ( X, Y )

For m > 0, EQ( X, Y )

T iff for pairs of < x, y >, which are
level m-1 sets of < X ,Y >, EQ( x, vy ) = T.

In the same manner NE(X,Y), GT(X,Y), etc. are defined.

Definition 15. LET(X,C) : LET(X,C) is semantically equivalent

to ( 3 X/¥D ) EQ(X,C), where D is a set of level m ( m>0 ) and

its sort includes that of C.

Example. 4. The interpretation of the formula (3 X/¥N)(¥ x/X)

( P(C X, a/*M 5 & Q( x ) ) over the 6~ and ¥ below is as follows.

cc =({m n1lt,
{{‘1s 1’233}m’{"2a"1101 1’213}1.1},
{{_1’ 1, 3 }m } ]
{1,

{ AshAt.scC t , As.s>0 } )
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sD - ( {} 9
{M>{-=1,1, 2, 3 }m , N » { -2, -1, 0, 1, 2, 3 }n o,
{ a"{"1’ 1,3}m} ?
{1,

{ P >Aspxt.scCt , Q »As.s>0 } )
val( ( J X/*N )( ¥ x/X ) ( P( X, a/*¥M ) &Q( x ) ) , o~ , ¥)
= val( ( FX/*{ -2, -1, 0, 1, 2, 3} )C¥ x/X ) ( NX.XC
{ -1, 1, 3}, &Ax.x>0) , 6 , ¥)
= val(

m
x/{-1}n ( {—1}n }m & x>0 )

in
-
]
—
——
W

¥

¥

V¥ x/{0} ({0} cl-1,1,3} &x0)
¥ x/{ 1}n ( { 1}n

18]
el
]
—
—
w

}m & x>0 )

VEx/01, 31 01,3, cl-1,1,31 &x0)

V¥ x/{-2,-1,0 12 31} ({-2,-1,0,1,2, 31
ct-1,1 3} &x0),0,¥)

=T

Because the formulas ¥ x/{ 1}n ¢ { 1}n ci{-1,1,3 }m & x>0 )

and ¥ x/{ 1, 3 }n c {1, 3 }n ci{ -1, 1,3 }m & x>0 ) are true.

2.3. Some properties of the multi-layer logic

(A) Two theorems on the multi-layer logic are proved. These
state that the multi-layer logic defined in Section 2.1 and 2.2
is a proper extension of the many-sorted logic. For proofs, [ 1]
can be referred.

Theorem. 1. Let G( Xgoe s Xy ) 1is a formula and variables

X --.,%x are not contained in G( x

m+1’ X ), then

0r m



( ann/*n"'*1D ). ( Q X /X 4 I ¢ Qux o/ %y ) G( XgreeerXp )

= ( me /¥ ...*1D DI ¢ QOXO/X1 ) G( Xgre oo Xy ) , where sz ¥

( 0<m<j<n ).

Corollary. 1.

Putting m = 0, we have ( ¥ Xn/*n"‘*1D ... (¥ xo/x1 ) G( Xg )
= (¥ xO/D ) G( Xg ).
Lemma. 1.

Let G is a formula and X0 is a free variable in G. If X is

defined over the domain E and E E:*n"'§7? , then the formula
below is a valid formula.

( 3 xn/E ) Q /X ) I Qux g/ X4 ) G( XgreoooXy ) =

n-1%n-1 n

(3 yn/*n...*1D ) ( Qn_1yn_1/yn Yoo ( Qoyo/y1 ) G( Ygrer1¥4 ).

Theorem. 2. Let G( Xgreor Xo ) 1is a formula and variables

X X ), then

.,X  are not contained in G( Xgreoes Xp

m+1?°°

( ann/*n"'*1D ) I mem/xm+1 ) ¢ Qoxo/x1 ) G( Xgoroee s X )

( mem/*m"'*1D Yoo ( Qoxo/x1 ) G( Xgaesor Xy ) , where Qj: 3
( 0<m<j<n ).

Corollary. 2.

Putting m = 0, we have ( 3 xn/*n“‘*1D )...( 3 Xo/ X4 ) G( Xq )

= (3 X/ D ) GC x ).

Corollary 1 together with corollary 2, it is proved that the
many-sorted logic is a proper subset of the multi-layer logic de-
fined here. In other words, the former is a special case of the

latter.

10
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(B) We provide the implication conditions of literals of the
multi-layer logic. They play an essential role in transforming

queries. For proofs and examples, [ 1] can be referred.

Theorem. 3. ( Implication conditions of the multi-layer logic )

Let Dx.’ Dy denote the domains of variables %, y respectively

and L( ceea Xy ) stands for a literal which contains x and may

k
contain some other variables. The formula below is valid

y, if
every corresponding variable pair x and y satisfies the set the-
oretical conditions given Table 1.

( Qr']yn/*n...*1ny)...( Q¥ /Yo 2o Q¥e/yq ) L aeeyyy )

- mem/*m...?1Dx)...( Qkxk/xk+1 ) I ¢ Qoxo/x1 ) L( e Xy ),

where min( m, n ) > k > 0.

Qp Qy Condition
¥ ¥ Dy 2D,
3 DA Dy # 8
Dy c D,
Table 1. Implication condition.

(C) We establish the unification rule in the multi-layer logic
defined in Section 2.1 and 2.2. Note that Unification Algorithm
and Unification Theorem by J.A. Robinson [9] are not directly
applic- able to the expressions in the multi-layer logic since
the domain of a term is indicated explicitly.

Unification Algorithm in the multi-layer logic

Let A be any finite nonempty set of expressions that satisfy the

Theorem 3.

11
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Step 1. Set k = 0, = ¢ and A = A.
% K

Step 2. If Ak is a singleton, terminate : P is a unifier of A.
Otherwise find the disagreement set Dk of Ak.

Step 3. If there are variables X Yy in Dk which are defined
over domains Xk’ Yk , then

(1) Praq = Pk{ Xk/yk , Xk/Yk } for ( Qx’ Qy ) = (¥, ¥ )

(3 ,¥%¥)

(2) Prat® Pk{ X/ Vi {Xk/ Yk}/xk } for ( Qx’ Qy)

(3) Prar = yk{ Vi % 0 Y /Xy b for (Q, Qy y= (3, 3)

where QX and Qy are quantifier of variables Xy and Vi -
If there exist a variable Xy and a term tk in Dk’ then
(4) Pre1 = Pk{ b/ % 1.

Next let A = Ak{ r

Kl } , where { r, /z, 1} is

K’ %k K/ %k

{ Xk/yk ) Xk/Yk b, A Xk/yk ) {Xk/ Yk}/xk b, | yk/xk ;

Y /X

K } and { t

K k/xk } for (1), (2), (3) and (4) respec-
ively. Go to Step 2.

Otherwise terminate, A is not unifiable.

The unification rule in the multi-layer 1logic is justified in
the following theorem, which corresponds to the Unification
Theorem proved by J.A. Robinson [9].

Theorem. 4, ( Unification Theorem in the multi-layer logic )

Let A be any finite nonempty set of expressions in the multi-
layer logic. If A is unifiable, then the Unification Algorithm

terminates with most general unifier/pA of A.

Proof.
The proof is by induction on k. Let €& be any unifier for A.

It suffices to prove that under the hypothesis of the theorem

12
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the underlined Unification Algorithm terminates at Step 2, and
until the underlined Unification Algorithm terminates , there
is some substitution %& such that the equation ﬁ'z,Pkuk holds
st Step 2 (k> 0 ).

For k =0, ® = p ¥ holds with Yo = & bacause.}JO = £ .

Suppose & = Pkgk holds for k>0 at Step 2. If %Pk is a sin-
gleton, then the Unification Algorithm terminates at Step 2 with
PA = Py the most general unifier of A and ¥ = ¥& the required
substitution. If %Pk is not a singleton, then the underlined
Unification Algorithm finds the disagreement set Dk’ Since A is
unifiable by hypothesis, there must be a variable and perhaps

more in Dk‘ Because, in the multi-layer logic defined here,

domain of a term 1is expressed explicitly, set theoretical

relations between domains have to be considered.
Case 1. ( Dk contains more than two variables.)

Let X0 Yy be variables in Dk which are defined over domains

Xk’ Yk and preceded by quantifiers Qx’ Qy' There are three

possible cases according to the combination of quantifiers. In

the later, let ...( Qxxk/Xk Yoo, G ceea Xy ) and ...( nyk/Yk )
G( ...,yk‘) be formulas involving Xy and'yk as their argu-

ments. ... denotes they may involve some other variables.

Case 1-a. ( Q, Qy ) = (¥, ¥ )

According to Theorem 3

A 2 yk/Yk Yoo, G( ceea ¥y ) = ... (¥ Xk/xk Yoo G( ceea Xy )

is a valid formula iff Xk is a subset of Yk' However, the con-

13
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verse 1is not always the case. Because if YkCZ Xk then there may

exist a element e” such that e" @& X and e” é:Y and satisfies
G( ...,e~ ). Thus, to conserve the validity of formulas concern

ed, Xy and Xk have to replace Yy and Yk'

Case 1-b. (Q,, Q_ )= (3, %)

X' Ty
According to Theorem 3

I ”v‘-yk/Yk Yoo, G cees ¥y ) = ...( 3 xk/Xk Yo.o. G( SRR )

is a valid formula iff X AY ¢ @. Since X, AY < X, and X, AY_

g;Yk, to conserve the validity of formulas concerned, Xk/\Yk

have to replace Xko

Case 1-c. ( Q. Qy ) = (3, 3

Lccording to Theorem 3

.. (3 yk/Yk Yooo GO eyy, ) = 03 /X el GO elyxy )

k

is a valid formula iff Yk is a subset of Xk' However, the con-
verse is not always the case. Because if Xk(: Yk then there may
exist a element e® such that e” E:Yk and e” thk and satisfies
G( ...,e" ). Thus, to conserve the validity of formulas concern-

and X, .

ed, Yy and Yk have to replace Xy K

Case 2. ( D, involves only one variable. )
Let Xy tk be a variable and a term other than a variable
in Dk’ Note that X, can not be occurred 1in tk since, by the

hypothesis of the theorem, A satisfies the Theorem 3. Hence this
case never happen. ( For details, [1] can be referred.) 1In

other words, Theorem 3 guarantees that the set A is unifiable.

14
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Thus, in both cases, we can select from Dk a term T and a

variable Zy that does not occur in Tyee Since %& unifies %Pk’ %&
has to unify the disagreement set Dk of %Fko Hence 2y and ry

satisfy the equation

z2¥, = ¥ s ().

Because z, does not occur in i the underlined Unification Algo-

k
rithm does not terminate in Step 3, but return to Step 2 with
Prs1 © Pk{ r/ 2y b

Let ¥%+1 = V& - { zkwk/zk }. Then we have rk¥% = rk¥%+1 as ry

does not contain z . Thus we have

yk¢% = fk{ Zk¥&/zk } U ¥@+1 ----- by definition of %&+1,
= Pk{ rk“&/zk } U ¥&+1 ————— by equation (A),
- fk{ rk¢&+1/zk } U ¥&+1 ----- zZy does not occur in L
D R S by defintuion of composi-
:,Fk+1%&+1 ————— by definition Of‘Pk+1'

Hence & = yk¥& holds at Step 2 for all k > O/until the underlined
Unification Algorithm terminates. This completes the proof.

Table 2 summarizes the unification rule in the multi-layer

logic.

Theorem. 5. ( Soundness of the query transformation )

If the formulas
S I R Q;,x“/X‘ YL (3 y/Y ) GCx', v ) 1,
[A2] Q;,x'/X' YL (3 y/Y )G(x', y)Y=P(x") 1],

15
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(Qéyk/Yk) (Qkxk/xk) (ngk/zk)

(¥ yk/Yk) (¥ xk/Xk) (¥ zk/Xk)

(¥ y, /1) (3 %, /%) (3 z, /(X AT, D
(3 yk/Yk) (3 Xk/Xk) (3 Zk/Yk)
constant (¥ xk/Xk) J ]
constant (3 xk/Xk) %)

(¥ yk/Yk) constant J' !
(3~yk/Yk) constant 2

Table. 2. Unification rule in the multi-layer logic.

[Qul ( QXX/X ) ( sz/Z ) [ HC x,z ) # P( x ) 1,
[Ic] ( Qr x'/X" ) PO x' ) = ( QxX/x ) P( x )

are true over the interpretation ( ¢~ , Y ), then the formula
[Tql ( Q;"x"/X" ) ( QZZ/Z I HC x",z ) # ( Jy/Y ) G( x" , v ) ]
is also true over the interpretation ( ¢ , ¥ ). Where #
denotes either & or V, and QQ", x" and X" obey the unification

rule given in Table 2.

Proof.

Because [A1] and [A2] are true over the interpretation (o~ , ¥,
(Q;,x'/X') P( x' ) is true by the definition of —. Thus (Qxx/X)
P( x) is true, since ( Qp x'/X! ) P( x* ) and [Ic] are true over
the interpretation ( ¢~ , ¥ ). According to Theorem 4, the uni-
fication rule given 1in Table 2 guarantees to find the most

general unifier of ( Q/,x'/X' ) P( x' ) and ( Qx/X ) PC x),

16
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nence if [A1] and [Ic] are true over the interpretation ( ¢ ,

W ), then ( Q;"x"/X" ) GC x', y ) is true. Thus [Tq] is true
over the interpretation ( o~ , ¥ ). This completes the proof.

Hypothesis of Theorem 5 are reasonable in the environment of

the relational database, which are the subjects of later

chapters. For details, [ 1] can be referred.

3. Describing queries in the multi-layer logic

The application of the multi-layer logic to a relational
database query 1language will be introduced by a series of
example queries. The examples’of this section are drawn from a
database which describes lands. The database contains the
following relations

LYP( LAND, YEAR, PRIC ) ;
LU ( LAND, USAG ) ;
LDA( LAND, DIST, AREA).

The relation LYP has a row which gives the price for each land's

identifier and year. The relation LU gives the usage of each
land. The relation LDA gives, for each land, its area and the
distance from the center of a city in which it is located. In

the following formulation, the wvariable marked by the '™
symbol tells the system to output the value of it. The numerals
following the '#' symbol indicate a number. The characters

quoted by .the symbol "'" denote character constants.

A query against more than one relation with Boolean conditions
Query 1. List the lands of usage a and their areas, which are

less than 35 kilometer aprat from the center of a city and

17
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whose prices are less than 600,000 YEN/m2 in the year 1981.
Q1. (3 17/LAND)(3 a”/AREA)(3 p/PRIC)(3 d/DIST)

[ LYPC 1,#1981/YEAR,p ) & LU( 1,'a'/USAG )

& LDA(C 1,d,a )

& LT( p,#60/PRIC ) & LT( d,#35/DIST ) 1.
The predicate LT( p,#60/PRIC ) restricts values of the column
PRIC in the relation LYP to less than 60, i.e., the price of a
land is less than 600,000 YEN/mZ. Similarly, the predicate
LT (d,#35/DIST) restricts values of the column DIST in the
relation LDA to less than 35, i.e., the distance of a land from
the center of a city 1is less than 35 kilometer. These

predicates play the role of Codd's "restriction" operator.

A query against more than one relation with a universal
quantification
Query 2. List the lands which are inquired in all the years,
their usage and distance from the center of a city.
Q2. (3 17°/LAND)(3 u”/USAG)(3 d"/DIST) (¥ y/YEAR)

(3 p/PRIC)(3 a/AREA)

[ LYP(C 1,y,p ) & LU(C 1,u ) & LDA( 1,d,a ) 1J.
Hereafter, we wuse an abbreviation in which variables that are
not referred 1in the query description are replaced by "@"
symbol. For example, Q2 is abbreviated like Q2°'.
Q2'.  (317/LAND)(3 u"/USAG)(3 d"/DIST)(¥ y/YEAR)

[ LYP( 1,y,@ ) & LU( 1,u ) & LDA( 1,d,@8 ) 1.

A query using built-in arithmetic and aggregation fuctions

Query 3. List, for each land of usage a and inquired in the

18
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year 1981, its identifire, its price and the difference of the
price with the average price computed on all lands inquired in
the year 1981.
Q3. (3 Q/*¥PRIC)(3 1°/LAND)(3 p"/PRIC)(3d"/INTG) (¥ q/Q)

[ LYP( 1,#1981/YEAR,p ) & LU( 1,'a'/USAG )

& LYP( €,#1981/YEAR,q )

& LET( d,sub(p,avg(Q)) ) 1J.
pApart from the predicate constant LET( d, sub(p,avg(Q) ), this
query 1is decomposed into the following two formulas. One is (3 ‘
1"/LAND)(3 p”/PRIC) [ LYP( 1,#1981/YEAR,p ) & LU( 1,'a'/USAG )1.
The result of this formula is a‘set of values of pairs < 1,p >
which satisfy the stipulation, that is, a set of lands of usage
a and years corresponding to them. The other is (3 Q/¥*PRIC) (¥
q/Q) [ LYP( e, #1981/YEAR,q ) 1. This férmula defines a
multiset Q of prices to which corresponds the multiset of lands
inquired in the year 1981. The result of Q4 yields the lands
of usage a and the corresponding prices together with the
difference of the corresponding price with the average price

computed on Q.

A query with a nested aggregation function and a Boolean
condition

‘Query 4, What is the average number of lands per usage, which
are inquired in the year 198i and whose areas are not less than
100 square meter.

Q4. (3 LL/¥¥*LAND)(3 g"/REAL)(¥ u/USAG)(3 L/LL)(¥ 1/L)(3 a/AREA)

[ LUC 1,u ) & LYP( 1,#1981/YEAR,@ ) & LDA( 1,8,a )
& GE( a,#100/AREA ) |
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& LET( g,avg(ucount(LL)) ) J.
In the query 4, it is required to calculate "an average number
of lands". For this purpose, we have to introduce a variable LL

whose value is a powerset of lands. This fact is explicitly re-

presented by a prefix ( 3 LL/¥¥LAND ). By means of a variable
LL, the underlined specification 1is easily expressed by a
nested aggregation function, i.e., avg( ucount(LL) ). For

example, if the value of a variable LL is a powerset { {A1, A2,

A3}a, {A3, B2} {DZ}C }, where { }x indicates a multiset

b 7
corresponding to the wvalue x. Then, ucount(LL) yields a set {3,

2, 1 }. Consequently, the function avg( ucount(LL) ) yields 2.

4, Virtual relation and inference algorithm

In the multi-layer logic for the relational database,
virtual relations are defined through formulas which have the

following form

(¥ xl/Xl) el (¥ xp/XP) [ (3 xp+l/Xp+l) ...(3 xn/Xn)
( Rl#"'# Rm #3S ) — T( xil,,..,xiq ) 1,
where # is either & or V, each of Rl”"’ Rm is a formula con-

taining base or virtual relations connected by either &.or V. T
( xil,...,xid )y, ( il’”"’iq ec{1,...,p } ), is an atomic for-
mula containing only variables xii...,xiqand denotes a virtual
relation to be defined. S is a formula free of both base and
virtual relations. S may contain ‘predicate constants such as
EQ, LT, GE, LET, etc.

A guery including virtual relations could not be reduced

directly to the retrieval procedures or a sequence of operaticns

in the relational algebra. To evaluate such a query, it is
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necessary to transform a query into one that contains no
vyirtual relation.

The method for transforming a query is based on the idea of
replacing virtual relations (if any) 1in tﬁe query by those
defining formulas. The substitutions are done repeatedly until a
given query contains no virtual relation.., Now, an overview of
the inference algorithm 1is given. Generally, the query

containing virtual relations is given as

(1) - o o o (lel/xl)--o(prp/XP)-o- [ -a-T(Xi],_..-,Xi()Io- ]’
where T(xii ,,xi) is a g-place virtual relation, il,...,iqzs
{ 1,...,0 1}, Q's are quantifiers of either ¥ or 3§, and

indicates that the query‘may contain other variables, constants

or functions.

The ihference algorithm consists of the following steps.

Step 1. If the query (1) contains predicate constants which can
be evaluated at this point, then evaluate them. Otherwise,
simply go to next step.

Step 2. Find a virtual relation in a query. If there is, go to
next step, otherwise go to "reduction procedure™ which is
discussed in section 5.

Step 3. Let a formula defining a vittual relation T(yii""yi;

be given as

(2) =--

(¥ yl/Yl) ce. (A yp/Yp) [ (3 yp+1/Yp+l) cee (Fyp/Y,)
[ ( Rl#"'# Rm #S ) = T( yil,.un,yiq) 1.
Rename the variable names sc that a query and a formula

(2) share no variables in common.

1

Step 4. If a formula (¥ yl/Yl)‘°’(¥ yp/Yp) T(yi yeeos¥: ) =
1 q
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(lel/Xl)...(prp/Xp) T(xil,...,xiq)

is a valid formula, then substitute T(xi,...,xi) by
1

q
(¥ yl/Yl)...(V yp/Yp) [ (3 yp+l/Yp+1) ... (3 yn/Yn) [ R, &
& R & S 1. As the result, the query (1) 1is trans-
formed to the formula (3). The validity of the formula

-—> (lel/Xl)...(prp/Xp) T(xil,...,xiq)

is testable by the "implication conditions" shown in

Table 1.
(3)=--

(Qizl/Zl)...(Q;zp/Zp)...(H yp+l/Yp+l) cee (Fyy/Y))

[ ... RY #...# Rp # S7... 1,
where Q5 ,zj,Zj (1<ji<p), Ri,...,R&,S" are respectively
obtained from Qj,Rl,. .,Rm,S by unification rules shown
in Table 2.
If a formula (¥ yl/Yl)...(¥-yp/Yp) T(yil,...,yiq) fé
(lel/Xl)...(prp/Xp) T(xil,...,xiq)

is not a valid formula, then try for other formulas de-
fining T(yi,...,yi).
1 q
The general flow-chart of the inference algorithm for the SBDS-

F3 is shown in Figure 1.

5. Reducing a formula into database access procedure

The flowchart of the reduction algorithm is shown in Figure

2. The algorithm which reduces a formula in the first order
logic into a sequence of the operations on the relational
algebra is discussed by E.F.Codd[5], R.Reiter[8] and

C.L.Changl6]. But their algorithm 1is not applicable to a
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formula in the multi-layer 1logic, because it may contain
variables whose values are sets. The reduction algorithm for the
first order predicate 1logic 1is extended to manipulate the
formula in the multi-layer logic by containing fhe "determine a
set" operation explicitly.

Overview of the algorithm is as follows. First, an atom
corresponding to a base relation is translated into the "load"
operation, an operation to access the base relation. If the atom
contain any constants and/or predicate constants evaluable, they
are translated into the "restriction" operation. This process is
repeated until all the atoms corresponding to base relations are
translated. Next, all the variables 1included by more than two

relations are translated into the "natural join" operation if

the relations are connected by &, the "or" operation if the
relations are connected by V. ( Note that "intersection"
operation is a special case of the "natural join" operation. )

If all the atoms 1in the formula are evaluated , then the
reduction process stops. Otherwise predicate constants are
evaluated and quantifiers of variables are translated.

Translation of quantifiers consists of the following

process. First retrieve the right-most variable in the prefix.
If its wvalue is a set, then it 1is translated 1into the
"determine a set" operation. Otherwise, if the domain of the

variable is a column of a base relation, then the ¥ quantifier
is translated into the "division" operation, the 3 quantifier  is
into the "projection™ operation.

The notation of the operations generated from a formula are

summarized below.
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*¥*LOAD <relation name> [ <work file name>
<column identifier 1list> ]

¥OR [ <work file name> ]

[ <work file name><column identifier 1list> ],

[ <work file name><coiumn identifier 1ist> ]
¥AND [ <work file named> ]

[ <work file name><column identifier list> 1,

[ <work file name><column identifier 1list> ]
¥DIFF [ <work file name> ]

[ <work file name><column identifier 1list> 1],

[ <work file name><column identifier 1list> ]
¥PROJ [ <work file name><column identifier 1list> ]

$ <column identifier>
¥JOIN [ <work file name> ]
[ <work file name><column identifier 1list> ]
< <column identifier list> >< <column identifier 1list> >
[ <work file name><column identifier 1list> ]
¥REST <work file name> : <column identifier>
{predicate constant> <constant>/<domain specification>
¥DIV [ <work file name><column identifier 1list> ]
/ <column identifier>

¥DETM [ <set name> ] = <variable>

{ <work file name> : <column identifier> FOR EACH

<work file name> : <column identifier list> }
¥DETM [ <set name> ] = <variable> = { [ <set name> ] }
¥LOAD means load the base relation indicated. *OR ,*¥AND and
¥DIFF denote OR, AND and subtract operations, respectively.

*¥PROJ, ¥JOIN, ¥REST and ¥DIV stand for projection, join,
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{1'1,_: DE{ME‘
po.of lines

75

Date & Time 12/ 5-81~ 18:43
= DFad
= 50

c === Starit of dalabase definintion ===
KN === Definition of the skeleton structure ===
17 3SR iLaNpo. C
231 &0 sLASALE.LAND +5ALE
31 50 JLA_N_SA.LAND +5ALE
43 50 JLA_PRIV.LAKND +POSE
53 &D JLA_NAT .LAND +POSS
&1 &I JLA_P.S LLA_PRIU.LA_SALE
73 51 JLA_H_S .LA_NAT LA_SRALE
83 88 i8LA_P_S.LA_P.5
37 &R JYERR. I
181 &R JPRIC.T
113 SR JUSAG.C
123 3R iDIST.I
133 SR JiAREA.T
C === The LYP relation has a row for sach land'
[N identifier and wear. giving its Pric. ===
143 RO i ALYP., LAND. YERR. PRIC >
13 Al, #1877, $58
22 Al #1373, #55
32 al. #1331. #5838
4 AZs #1373, #8a
52 Azs #1981. #8&
82 Q3. #1373, #1485
e a3 #1331, #112
82 Bl1, #1EF9. #563
33 C1. #1377, #22
g2 (S #1979, #25
1132 Cz. #1977, #23
122 C2. #1379, 28
132 Css #1931. 27
147 Q1. #1981. #48
133 Dz, #1981, #35
162 03z. #1379, #1858
172 03. #1931. #28
187 X
c === The LU relation gives the usage of each land. ===
151 RO ;0 LU. LAND. U=aG 2
1) Al a
223 B3, a
K R3. a
4 A3, b
3) Bi: b
6 B1. c
Fa g c
82 L2, a
23 c2, c
163 a1, d
112 2, b
122 02, d
133 0z d
14) %
Figure 3. Some results of the database system SBDS-F3.
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12
2)
32
4)
32
5)
7
8)
32

8

73

76

=== The LDA relation sives, for each land. Its area and

g distance from the center of a city in which It is located,
k0 ; ¢ LDAs LAND, DIST, AREA 2 ‘

Ri. #48., #3048

A2 #2858, #128

A3, #7 #118

BR1. #274 #5680

C1. #18, #50

C2: #34, #3243

ni, #28. #35

D2, #38. #1408

b3, #28, #38
c === End ofbase definiin ===
c === Definition of wirtuasl relations. ===
C === The easuy—-{to buw lands (EB_LANO) are the lands for
c sale wvhose prices are less than 258.888 YEN<m . ===
KD ;i ¢ A 1/LA_SALE. A 9~-YERR. A rsFPRIC 2 '

L -¢ (LYP, 1., y9s PY & (LT, P, #253<FPRIC) ) '
U CEB_LAND. 1. 9., P} T

c === The CU_LAND lands are lands of usage 'c’ which
C are possessed privateld. ===
KO i O A 1-LA_PRIV > L ={LU: 1., csUSAGY U {CU_LAND, 12 1
C === The ON_LAND lands are national lands of usage 'd’.
Ko i U A 1/LANRT 3 L -{LU, 1, d-USAG) ¥ (ON_LRND. 13 3
c === The TOWN_L lands are lands which are less than 7 Km
C arart from the center of a3 city. ===
Ko ;i ¢ A 17LAND, A d-0I5T Y !

L -C L0A. 1.d:8) & (LT, d. #7-7DISTY > '
U (TOWN.L, 1., d3 T

== The LAND8! lands are lands insuired In the wear 13981.

i ¢ A 1-LAND. A P<PRIC. 8 u-USAG: A a~“AREA, A d-DIST 2 !

L - (LYP, 1. #1981/YEAR., PY & (LU. l.ud) ' :
(LDA: 1. d. a) > U CLAND2L., 1. P. us a:, d) 3

=== The Largse land81 (LA_LAR1) lands ére lands in9uired
%hi wegr 1981 and whose area iz not less than 1898 sauar
meter, ===

i ¢ B 1-LAND, A P<FRIC. A usUSAG. A 3-AREA. A dsDIST ) '

-1

=C (LU I ud & CLYP, 1. #1331-YEQR, p) !
& {LD0A. 1. d. &) & ~(LT. 3. #188-8REA) )'
P ACLALARL, 1. Py ud 1

( Continued )
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C === Query 1 in Charter 2. ===

qu i ¢ E la~sLAND. E ar~-AREA. E pr-PRIC. E di~sDIST ) '
L CLAaNDO81. la. rrs a~-USAG. ar. diy '

' ACLT. pr. #68-°PRICY & (LT, di, #35<DISTY T 7

gLopD  LYP E Wi, 1. 2. 3 1

JREST W 1: 2 = #1981-YEAR

SJREET W 1: 3 .LT. #nﬁfPRIL

sonld LU L H 2, 1, 23

4REST W 2: 2 = a 2

gLopd LR L N 3. 1.

2, 33

$REST MW 3+ 2 LT. #33-0I5T
«JOIN LW 1 X LW 1., 1. 2. 313

$ 1 X 1 L W2 1, 23
gJ0IN W 1 3 L W1 1. 2, 3. %13

$ 1 XX 1 L W3, 1 2, 31 .
PROJ L W 1., 1, 2. 3. 4., & &1 % &
$PROJ L W 1., 1, 2, 3. 4. 6 1% J
sPROJ L W 1. 1 2, 4.4 53 F n
¥PROJ LT W 1.4 1 2, 4.0 531 % 1
== ANSHER == ( la ar 2
2 28

N === RQuery 4 in Charter 2. ===

243 RY i { E LLA¥¥LAND, E a~~-REAL. H u-susaG. !

E LsLL, A 1L 2
L {LAa_LRS8LI. 1., &, ul '
& ¢ LET. 9, avafucount{LL)) > 1 7
fLloan LU CH 1, 1. 213
$LopnD LYP L W 2, 1, 2. 3 3
$REST MW 2: 2 = #1981-YERR
$LopD LDR L W 3., 1. 2. 32

¥REST W 3: 3 .-LT. #188-RRERA
gJO0IN C W11 L W1, 1. 213
< 1 X 1> DH2: 1.0 2, 31
CXJOIN O C W1 3 KW 1.0 1., 2, 3 4 1
{ 1> 1> CLHWZ 1. 2. 313
¥PROJ LC W1, 1. 2, 3. 4, 3. 6 3% 5
¥PROJ LW 1. 1, 2, 3. 4, & 31 % 4
¥FPROJ L W L, 1. 2., 3. 61 % &
¥0ETM L S 1 J=L={HW1: 1 FUOR EARCH W I 23
Wiy Wi, 1. 2, 31~ 1
Iy CcwWwi1, 2. 33~ 2
¥OETHN L 3273 =LL={EL3513:}
¥EURL 9 <= avs¥
= ANSHER == -]
g 280 |
Figure 3. ( Continued )
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restriction
indicates

value of the variable of level m (m > 1) and stores it in a set

75

indicated.

and division operations, respectively. ¥DETM

"determine a set™ operation, which determines the

Some results of application of the reduction

algorithm are given in Figure 3.
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