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LU—ﬁeeompoSition of a Matrix with Entries of Different Kinds
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February 1982

Abstract

Let FoK be fields andrconSider a matrix A over F whose entries not
belonging to K are algebraiéally independent transcendentals over K. It‘is
shown that if det Ae K* (=K-{0}), the matrix A, with suitable permutations
ofvits rows and columns, ié'decomposed ihto LU-factors with the entries of

the U-factor belonging to K.
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1. Introduction
Let K be-a field and F (> K) an extension field. For S cF we denote
by M(S) the set of matrices with entries belonging to S. Suppose an n by n
matfix A:(Aij)e M(F) is expressed as |
A=Q+T,‘ ' (1
where
i) Q eM(K),
ii) non-zero entries of T are algebraically independent
transcendentals over K.
In the following Wé shall denote by T¥* the set of non-zero entries of T.
As is well known, A is invertible in the ring K[T*] of polynomials in
T* over K, i.e., A e M(EﬁT*]). iff det Ae¢ K¥(=K-{O}). Here.we are
intereéted in whether,wé can compute A'»'1 by means of pivot operations in
K[T¥]; moreover, how simple we can maké the LU-factors of A by applying
suitable permutations to its rows and columns.
By way of illustration.'we will start withvan example. Le£ g}g.(the
field of ratiohal numbers) and set E;Q(k,y,z). where {x,y,z}, as a
collection, is assumed to be algebraically independent over Q. Matrix

12 3 45

1{=1 1 1 0 1)
2110 x 1 0
a= 3]0 1 10 1},

44y-1 1 0-1

501 1 0 z 0/

is expressed as the sum of the following Q and T according to (1):

-1=



100 1 0 00 x 0 0
0o 1101, T=]00 00 0
0-1 1 0 -1 y-0 0 0 0

\1 1.0 0 0 L0 0 0 z O,

Note that det A = 2 and hence A is invertible in g[x,y,z].

decomposed into LU-factors in F as

with

A=LU,

1 0 4] 0 0\ f_1
-1 1 0 0 0 0

0 1 1 o ol,u=1o
-y y-1 y=-1=-2/x 1 0 0
\~1 2 2+1/x -(xz+1)/2 1 LO

It is observed that some of the entries of L and U,

diagonals-of U, do not belong to K[T*].

However, after rearranging the rows and

2 1 0 x 1 0

51 0 0 z 1/

15 3 4 2

1{-1 1 1.0 1

we obtain the LU-decomposition

with

E = L G‘

—2-

1 x+1

0 —x

0 0-2/x O

0 0

The matrix A is

-1 ol{.

0 -1)

especially some of the

the columns of A as



"1 0 o o o -1 1 1 0 1
0o 1 0 0 0 o1 1 0 1
L=j-y y=1 1 0 0], U=|00 2 0 0.
1 w2 1o 000 10
-1 1 0 z 1) L0 0 0 0 1.

The LU-factors are much Simpler in the sense that all the entries of 6 are
numbers in K=Q, i.e., BE M(K) and, consequently, the entries of E are
polynomials in x, y and z over K of degree at most 1.

In this paper, we establish a theorem stating to the effect that this
is always the case for any matrix A which admits the expression of (1) with
det A €K¥, i.e., that it is always possiblebto find a permutation of rows
and that of columns, through which the matrix A can be brought to the form
decomposable into LU-factors with a U-factor in M(K). Fufthermore, it is
shown how to find suitable bermutations. Some implications of the theorem

are also discussed.

2. The Theorem
In this section we prove the following theorem.

Theorem. Let A be a matrix of form (1). If det A e¢K*¥, then there exist

permutation matrices P_, P and LU-factors L = (L..), U= (U,.):
r c 1] i
| -
Pr A Pc =L U

such that

(1) Lij is a polynomial of degree at most 1 in

non-zero entries T* of T over K (Lii=1; Li.=0 for i<J)

J
and

~

s = s - * -~ '_ 3 3
(i1) U eM(K); U € K (Uij‘o for i>j). 0



To prove the theorem, the following lemma is crucial, giving a
necessary and sufficient condition for a matrix of form (1) to be

invertible in K[T*]. We will say that a matrix is strictly lower

triangular if it is a_lower triangular matrix with zero diagonals.

Lemma 1. Let A be a matrix in (1). Then det A€ K¥ iff det Q # O and
P}(TQ—1)Pr is strictly lower triangular for some permutation matrix P.. i
Proof: ["if" part] Suppose PIL(TQ_1)Pr is strictly lower triangular for
some permutation matrix Pr' Then, since det Q # 0 and A = Q + T, we have

det A = det[(T+TQ™ 1) Q]

det[I + P;(TQ-1)Pr] det Q

det Q ¢ K¥.

["only if" part] If det A€ K*, then det Q = det A # 0, so that we may put S

= Q-1. Suppose, to the contrary, that-P;(TS)Pr is not strictly lower

triangular for any‘permutation matrix Pr' Then TS has a cycle of non-zero

entries, that is, there exist an integer M21 and a sequence of indices i(m)

and j(m) (m=1,...,M) such that
Ti(me1),5(m) * © @4 Syepy j(my * O fOr m=lo... .M,

where i(0)=zi(M). Choose M to be the minimal of such integers. For

notational simplicity, we write Ti(m—1),j(m

)=tm and Sj(m),i(m)=sm’f

For k=0,1,..., consider the expression of the (j(1),i(1)) entry of
S(TS)kM in the form of the sum of products of Tij's and Sji‘s.
Corresponding to the above cycle, it contains a term

k k
s1(s1s2...sM) (t1...tM) ,
since no other similar terms of (t1...tM)k exist due to the minimality of -M
and since it cannot be cancelled out by non-similar terms by virtue of the

algebraic independence of elements of T¥,

Next we formally expand A"1 as

.



ro
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1 1

87" = et Hal”
=S - STS + STSTS - ... .

Each entry of A-1 on the left-hand side is a polynomial in T* over K since
det AeK¥. On the right-hand side, we first observe that each entry of the
m-th term is a homogeneous polynomial in T¥ of degree m-1. Hence, by
algebraic independence of T¥, no cancellation occurs among distinct terms
in this expansion.

It follows in particular that the (j(1),i(1)) entry of the right-hand
side contains a term of arbitrarily high degree, since ﬁhe non-zero term

(t1...tM)k of degree kM, stemming. from S(TS)kM as aboVe, cannot be

cancelled out for k=0,1,.... This is a contradiction. U

We make use of the following well-known lemma, the proof of which is
omitted. |
Lemma 2. 1If det Q # 0, then for any permutation matrix P, there exists a
permutation matrix Pc and LU—faetorva, a‘such that

P; QP = M‘U, | :
where M is a lower triangular matrix with unit diagonals in M(K) and U a

nonsingular upper triangular matrix in M(K). 1

With Lemmas 1 and 2, the Theorem is easy to establish as shown below.

Proof of Theorem: Let Pr and Pc be permutation matrices as in Lemmas 1 and

2, respectively. Then from Lemma 2 we obtain

A

P' AP
r c

. .
Pr (Q+T) Pc

—
(I+Pr(TQ )Pr) (P;QPC)

]

-1 ~
(I+P;(TQ )Pr) MU
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where

~

-1
L = (I+P!(TQT)P) M.

Since both factors of L are lower triangular matrices with unit diagonals,

L is also a lower triangular matrix with unit diagonals and therefore

L

= L U is actually the LU-decomposition of A. Obviously U belongs to M(K)

- 1

and, consequently, the entries of L = A U™ rare polynomials in

.T* of degree at most 1. [J

Remark 1; In parallel with the Theorem, it is likewise possible to find
permutations through which A can be brought to a form decomposable into
LU-factors in such a way that the L-, instead of U-, factor belongs to
M(K) . |
Remark 2. Consider a matrix A in M(F). Then it can be written as

A=Q +T,
where Q€ M(K) and TeM(F\K). In general, the non-zero entries T*¥ of T are
not algebraically independent over K and the LU-decomposition of the
above-mentioned kind does not necessarily exist even if det AcK¥, as is

the case with

where K=Q and F=
However, it may héppen that the matrix A0=Q+TO. where TO is obtained
from T by replacing its non-zero entries by algebraically independent

transcendentals, satisfies the condition det A ¢K¥. Then the Theorem can

0

be applied to A,, which, in turn, implies that A itself can be decomposed,

0

with suitable permutations, into the LU-factors with a U-factor belonging

—6-
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to M(K).

3.  Discussions

When given a matrix A of form (1) satisfying the condition det Ae K¥,
we can find the suitable permutations Pr and Pc on the basis of Lemmas 1
and 2. Pr can be determined by the zero/non-zero patﬁern of TQ_] and Pc by
pivoting operations on the matrix Q. Thus both permutations can be found
with O(n3) arithmetic operations in K. |

Lemma 1 gives an efficient way, with 0(n3) arithmetic operations in K,
for testing whether a métrix A of form (1) satisfies the condition
det A€ K¥, H

The problem dealt with in the preseni paper has arisen when the author
was investigating the following problem of large-scale system analysis,

Let R and C be the set of row and column numbers, respectivély, and
A(I,J) denote the submatrix of A corresponding to I(c<R) and J(< C). For a
matrix A of form (1), it is known [1] (ef. ‘also the concept of 2-block
rank in [2]) that we can find, by an efficient algorithm, two subsets Ic R
and J< C such that |

rank A = rank A(I,J) + rank A(R\I,C\J),

- rank A(I,Jd) = rank Q(I,J)
and |

rank A(R\I,C\J) = rank T(R\I,C\J),

where the rank is considered over F. 1If we take I and J to be the minimal
of such subsets, we have {I| = |J| and

det A(I,J)e K¥*,

The submatrix A(I,J) above meets the condition of the Theorem. This

implies that a matrix A of form (1) with det A # 0 can be decomposed, after

-7~



suitable permutations Pr and Pc’ into LU~factors as
1 -
Pr A Pc =L U

with a lower triangular matrix

(I, o
Loy Lap)
with unit diagonals and a nonsingular upper triangular matrix
5.
U U
~ |
U = L 11 ~12|
0 U22j

sucﬁ that

i) the entries of £11 and £21 are polynomials in T¥ éver K of degree

at most 1,

ii) 611 € M(K) and the diagonal entries of 622 are algebraically

independent ovef K.

This procedure is applied to the iterative solution of a system of
linear/non-linear equations f(x)=0 in real unknown variables x, as follows.
Let us suppose that a sequence of approximate solutions are computed by
means of the Newton méthod, which would involve the solution of
J(x) Ax = f(x) for Ax through the LU-decomposition of J(x), where J(x) is
the Jacobian matrix.

Since the non-constant derivatives of f(x) may vary in value at each
iteratibn, we regard them as being algebraically independent, or in bther
words, denoting the non-linear part of J(i) by T(x), we express J(x) in the
form (1):

J(x) = Q + T(x)
with K=Q or K=R (the field of real numbers). Furthermore we assume that
det J(x) e Q* or R¥.

As the Theorem guarantees, we can obtain the LU-decomposition of J(x):

-8-



J(x}

L{x) U
with
(I +T(x) Q" H M

M+ T(x) U—1,

L(x)

where Q = M U, as above, and the’permutation matrices are suppressed for
simplicity. Since M and U do not depend on x, they can be computed before
the iteration process starts. At each iteration step, only the L-factor
L(x) of J(x) is to be computed. Note that u~" on the right-hand side of
L(x) does not cost much since U is triangular. As pointed out in Remark 1
in the previous section, we may alternatively adopt the LU~decomposition

J(x) = L U(x) with the L-factor being independent of x.
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