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Nonlinear system identification is one of the most interesting
subjects which one meets in a variety of fields such as engineering,
physics, and biology, although it may appear in a peculiar manner to
each field. Numerous literature have been published on the theory and
the practice, for which one may consult[l]. White noise analysis,
often referred to as Wiener analysis after the pionéering work of
Wiener[2], 1is known as powerful methodology to approach the
identification problem. The method, as we shall explain in the
subsequent sections, is based on full use of the familiar (but
mathematically tricky) property of the Gaussian white noise, a formal
derivative of the Brownian motion. For a given (time invariant and
stable dynamical) system, its impulse response function (referred to
as the first order kernel) and the higher order kernels( as the
extensions of the impulse response function of a linear system to a
nonlinear one) are sometimes called as Wiener kernels and characterize
the system's output to the white noise input. There have been a
number of works on Wiener analysis(3],[41,(5]. Some of them are on
the relationship between the series and the traditional or
conventional description of a system ( for example [6]1,[7]). There

are works on the applicability and the 1limitation of the
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methods([8],[9]. There are also works concerning the problems which
may arise in the practical use of the methods: How to measure the
kernels{2],[10],[11}, how to interprete the Kkernels measured[12] and

SO on.

In the past decade, Wiener analysis has seen a number of
practical applications in biological system's analysis. In the
application, the method is recognized to have several well-advertized
advantages which are summerized as follows: (1) The method does not
require a priori knowledge on the system to be analyzed. It can be
thus classified into a non-parametric method of identification. Most
of biological systems are 'blackboxes' and it is not always possible
to ‘'peep' into the inside of the boxes. Even if one suceeds in doing
so, there always are smaller blackboxes to be dealt with. In most of
biological systems, we do not have any idea on the type of
nonlinearity involved. It 1is not always possible, therefore, to
identify a particular nonlinearity in a system and to describe it
through individual or tailored theory. Under the circumstance a
generalized (nonlinear) system analysis such as non-parametric methods
seems to offer a better chance of identifying biological systems. (2)
In principle, it suffices to acquire a rather shoter sequence of the
simultaneous observations of the test input and the corresponding
output in order to estimate the whole kernels. This is a crucial

factor in biological applications[3].

In what follows, we will review the three aspects of the Wiener's
method of nonlinear system analysis: (1) Mathematical background of
the theory (2) Structure of time invariant systems and their Wiener

kernels (3) Biological applications.



43

1I. Mathematical background

The theory has been developed essentially as armethematical means to
represent a strictly stationary noise in terms of the Brownian
motion[131, although Wiener, who originated the theory, foresaw the
possibility of the theory's application in the stitistical mechanics.
in electrical and control -engineering the theory is called
twhite-noise analysis' and is used to analyze stable physical systems;
a proper application in the case of linear systems. In his famous
book, Wiener himself discussed the possibility of applying his theory

to the practical, engineering problem[12]}.

Consider the Brownian motion B(t), —-o<Kt<x» defined on a probability
space ( Q,gs,P), where symbols are understood as usual. Let LZ(B) be

the totality of Brownian functionals ¢y satisfying
2
EY(B) " ¢ = - (1)

L2(B) can be a Hilbert space if the inner product and the ‘norm are
suitably defined. Therefore, the sﬁace L2(B) possesses an orthogonal
base. One may adopt as the base the orthogonal system of multiple
Wiener integrals. The multiple Wiener integral of érdér n can be
viewed as a subspace of L2(B)[14], namely the 1image of L2(Rn) (=
totality of square summable functions defined on rR® ) by a linear map
In defined as follows [15]: Let kn(tl,...,tn) be any element of
L2(R"). Then

(o]

I (k ;B(.))= f i} / k (t{sre-est )h

(n)(dB(tl),...,dB(tn)) (2)

where k_~ is referred to as the Wiener kernel of order n.
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h(n)(dB(tl),...,dB(tn)) is a function defined wvia multi-variate

Hermite polynimials: Let {Xi}i_l N be the 1independent random
T L poaoe e hA

variables defined on ( Q,&S,P), each subject to the Gaussian

distribution with mean 0 and variance Pi' Then - the function is

defined as follows:

Xi Xi
(n) _ 1 n
h (Xi ,---,Xi )- &PHQT g e e s g P ) (Pl -..Pi )
1 n 1l i, 1 n

where &en is the multivariate Hermite polynomial with respect to N

1/2

(3)

variables X reeerXyi

T
He~—2

N

Q

afin(xi reserXy )= (-l)nexp(
1

exp (- i
. i O0X. ...0X. P 2
n i i

1 ln 1
Therefore, any Brownian functional VU (B) can be expanded in the series

of orthogonal functionals for a suitable choise of {kn }:

v(B)= nzo I (k iB(.)) (5)

This implies that Y  can be characterized by the sequence of {kn}.
Now let wus consider the output of a time invariant and "stable™"
physical system exposed to the Gaussian white noise input with mean 0
and variance 1. Since the noise is mathematically interpreted as a
formal derivative of the Brownian motion B(t), the system's output can
be also regarded as the Brownian functional. The output of the stable
system belongs to L2(B) and is expanded in a possibly infinite series
of orthogonal functional of the Brownian motion. The system's output

to any Gaussian white noise input can be determined by the series of

orthogonal functionals which are specified by the kernels {kn}. Note

v
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that we may regard kn=kn(t ,...,tn) as a symmetric function of the

1
jndicated arguments without 1loss of generality from the property of
In[le]. For a given system  , the corresponding kernels can be
computed as follows [16],[17]. Note that any k,(ty,...,t;) ¢ L?(R™)
is considered to be a 1limit of a sequence of step functions

¢(§)(tl,...,tn), N=1,2,..., each defined on a product space of the

same finite interval, T(N), i.e., on T(N)x...xT(N)c:Rn:

(N) (¢

¢ n l,...,tn)= ¢il"'in if (tl,...,tn)gAi x...xAin
(6)
0 otherwise
where Ai=[ T T y, i=1,2,...,N are non-overlapping internals and

are a partition of the finite interval T(N), and where each
'Ai] (]a] #+ Lebesgue measure of 5 ) tends to 0 and o (N) to infinity
as N goes to infinity. We denote by , the length of interval |p| as

well as the interval itself. Now noting the symmetric property of kn

and hence ¢(N) ' ¢fN) . can be obtained as follows:
n l1,...1
1 n
5N - 1 BB B(ay))h ™) (B(a, ) B(A, ) (7)
i .._i n!A. A. l F o o g N i F e o o g i )
1 n ll ln 1 n

(1giqreeeri gN)

where we have replaced the Brownian functional ¢ (B) by a function of

B(A ...,B(AN) and have rewritten the function as

BE
w(B(Al),...,B(AN)). As far as the output of time invariant and
stable physical system concerns, it can be written as

V(T )= ) I (kB (4T )

L3
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f;;.J k (£ reaert )h (dB(T+tl,...,T+tn)) o

oo

- - (n)
o] k(e Treesst Db (dB(tl),...,dB(tn))

- QO

o]
o

Il >~18 I &8

3
o

In such a case, the kernels can be also obtained by replacing
expectation operation in the r.h.s. of (7) by the time average of the

involved quantity.
III Structure of the time-invariant system and their wiener kernels

Some correspondence must exist between a system's physical structure
and the system's kernels. Little 1is known, however, on the
relationship. This is one of the reasons why Wiener's theory has not
been very popular in system analysis. A list of kernels for each
class of (analytically known) nonlinearities may help to abbreviate
the problem(7]. The kernels also have to be reconciled with the
traditional description of systems based on the block diagrams or a
set of differential equations. Here we will discuss the cases where

kernels were determined analytically.
(a) Linear system FO

the white-noise input produces from a linear systen, FO' with an
impulse response function, h(t), an output:

t
X(t;w)= [ h(t-s)dB(s) (9)

-
Thus, X(t;w) is written by the first-order functional whose kernel |is
h(-t). X(t;w) is a Gaussian process with the mean 0. The correlation
function is:

R(1)= [ h(t)h(t+r)dt
0
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conversely, a Gaussian process whose spectrum satisfies Paley-Wiener's
condition is expressible in the form of (9). For instance, a linear
system, say F:d/dt, without any impulse response function does not

have the expression (9).
(b) Squarer device

Let F_ be a aquarer, a device which gives the output X(t)2 to an

2

input X(t). Then the kernels of the cascade system of F0 and F2 are

(Fig.1l a):

t
X(t;w)=( [ h(t-s)dB(s)) >

-0

_ _ _ b 2 | |
= Iz(h(. tl)h(. t2),B(.)) + { h(t)“dt (10)

The system's second-order kernel is h(-tj)h(-ty) 'and the O0th order

kernel is:

f h(t)zdt
0

(c) Nonlinear device without memory

Let FN be a nonlinear device without memory in which an input, X(t),
produces the output, y(x(t)). Then the kernels of a cascade system of

F0 and FN are (Fig.1lb):

t
Y(t;w)=y( [ h(t-s)dB(s)) : (11)

0 L]
is subject to the Gaussian distribution with the mean 0 and the

Let X(t;w) be the output of F For a fixed but arbitrary t, X(t;w)

variance g2 = / h(t)zdt.
0

If y(X(t;w)) is expanded by the Hermite polynomials:

LS ]



y(X(t;w))= 7 dan<—}S§i’-) (12)
n=0
where:
2
d,= —— [ y(x)Hp( X )e 2073 (13)
J/2ron!  -w g
Now:
t

X(t), 1 _
H (SE)=H (= [ h(t-s)dB(s))

«00

1 © .
=—8‘r{f“'fh(t—sl) .- -h(t-Sn)h(n)(dB(sl) reserdB(s )

Then, the n-th order kernel of Y(t;w) is:

L h(-ty...h(-t ). (14)
61’] 1 n
EX.1 For the case that y(x)=1, x20; = -1,x£0:
4. =0 3 - 2 (—l)n(Zn—l)!! (15)
Thus:
o n t
2 - -1) 1!
Y(t;w)=|= 7 (-1) (2n-1) [...] h(t-s,)...h(t-s )x
Th=Zog g2n+l (2n+1)! 1 n

(n)
xh (dB(Sl),...,dB(Sn))

The autocorrelation function of the output (16) is:

R, (1)= EY(t;ju)¥(t+riw) - (EY (t;w))?2
© nld

n
z 2n(Rxx
n=1l o

(T))
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2 .
: =R 0 we obtain:
gince O XX( ) s

(m)
Ry (1)= —— arcsin( X,

(0)

R
XX

This is the arcsine law for the clipped noise [18],
(d) Sandwich system

A sandwich system is composed of the system in (c¢) and a 1linear
system with an impulse response function, g(t) (Fig.2). The system's

output is:

t

S
Z(t;w)= [ g(t-s)y( [ h(s-1)dB(1))ds (17)

Using the expression of the output Y(t;w) of F:

P g 1.5 |
Z(t;w)= g(t-s) [...[ h(s-1t,)...h(s-7 )x
n=0 Gn—uoo -00 1 n

xh‘“)<dB(Tl),...,dB(Tn)>

Thus the n-th order kernel, kn(Tl,...,Tn), of the sandwich system is:

min(Tl,”ﬁTn)
K (Tqyreeert )= ;HE _i g(t)h(r,-1) .. h(r_~t)dT . (18)

~

Let the n-dimensional Fourier transform of kn be kn , then:

ol

k (Yyreeery )= ﬁ by )eeeh(y gy teeety ) (19)

o
where h and g ar the Fourier transforms of h and g, respectively.

(£) Wiener kernels of systems described by Itd's stochastic



differential equations.

Here, 1Itd's stochastic differential equation 1is interpreted to
describe the output of a dynamical system with the Gaussian white
noise input. Our interest is on how the solution process (system's
output) is expressed 1in terms of the Brownian functionals. Wiener

kernels are known only in a few processes which are described by Ito's

stochastic differential equation.
EX.1 dX(t)= aX(t)dt+ (bX(t)+b')dB(t) a 20

Denote the kernels of X(t) by xn(tl,...,tn), n%0. Hida[l14] showed
that:

Xy = 0 (since EX(t) = 0),

xl(tl) = bexp(-at), t =0 ; 0, t <0 (20)
-1. n-1 .
x (t,,...,t ) = (n!) Db b'exp(-a min t.)¢ __ n(t,,...,t )
n' 1 n 1<j<n i’ (==, 0] 1 n
where: ¢An(tl,...,tn) = ¢A(tl)...¢A(tn). Here ¢A(t) is the
characteristic function of the interval , .
EX.2 dX(t) = £(t)X(t)dB(t)
The solution is expressed by McKean [19] as :
t t
X(t) = exp( [ £(s)dB(s)- % nfuf: ), ||flr12:= [ £(s)%ds (21)
0
0

From the above equation, we have the expansion of X(t;w ) whose

nth-order kernel is:

=_1 2
Xn(tl""’tn) Hf(tl)...f(tn) (22)

EX.3 It8's stochastic equation in general form.
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We consider It0's equation:

= B ' =
dx (t) £(X)dt + g(X)dB(t) X(0) = EO (23)

where £ and g satisfy some regularity conditions and the constant
initial value go is independent of {B(t), t > 0}. Then the solution
Xx(t) is a stationary Markov ©process and 1its kernels satisfy the

following differential equations:

dx = f dt
0 0
dxn(t—tl,...,t—tn) = fn(t—tl,...,t—tn)dt

(24)
+ <“gn-l(t"tl""'t—'tn—l)qb(_t,t+dt](tn) >

n »1

Hida solved the equations for the bilinear system to obtain the

kernels([14].

Isobe and Sato found a formula to compute the kernels of the systems
which were described by 1It8's equation. Since the solution was
Markovian, 1its transition p.d.f., P(g.t]g',t"), satisfied the

Fokker~-Planck equation(20].

°p _ _ 3fp , 1 3g°(8)p
ot o0& 2 8&2 (25)

Then, the nth-order kernel xn(tl,...,t ;t) of X(t) for a fixed but
n

arbitrary t is:

1]

(=D [ (ty,e..it st,E)dE (261

-0

xn(tl,...,tn;t)

L G S T G
n

1

where:
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4

o

. = £
O (t ,eeest stye) = [ [plE,efe )
n-fold J

.din (27)
(g) Wiener kernels as a function of the power of the Gaussian white

noise input (an integro-differential formula)

Let us consider a process BA(t) = JAB(t) ( A; positive constant )
and call it as the Brownian motion, too. B(t) = Bl(t) is then called
as the standard Brownian motion for the distribution. Suppose that
the system y recieves the differential process BA(t) as the input.
The output of the system y is then considered to be equivalent to
that of the system y following an ideal preamplifier of gain /A to

which the derivative of the standard Brownian motion B(.) is supplied

instead of QA(.).
Y(e) = w( By () = W(/A B(.))

Then one can consider the Wiener expansion of the latter output. The
kernels appearing in its orthogonal functional expansion are functions
of the gainJZ of the preamplifier: 1Isobe and Sato[21] derived the
following relationship. Note that the over-all system's kernels depend

on the input power A. Let us rewrite the kernels as

kn(tl, ,t 3 A) n=20,1,2,
n+2
__ﬁ kn(tll rtn,A) _ ( 2 ) o . (t " .A)d
5A n ai A L TR A AR RN
A2 A 2
(28)
gk (E ..., t 5R) _ neamyr
aAm n E%z
Aj 2Mn1a
>( . o e ’ I I [T IA d
J_w fkn+2m(t1’ tn'Tl Tl Tm n )dTl T



The kernels of a system V¥ are obviously:
{kn(tl""’tn71)}'
EX. Sandwich system

1sobe and Sato[21] applied the results discussed above to the sandwich

system as shown in Fig.2 and obtained a relationship:

dn Cl’l (2) _ (n+2) Cn+2 (2)
n n T2 n+2 (29)
dA 5 =
A A

Thus we obtain {cn(A)} from cO(A) and cl(A) via formula (29). Here we

have:

y(/Bx) = RAMOLNCS
2 (30)
w® -2
-1 = 2
c (A) = [ Y(/A x)e dx
2mnl-ew

Thus a sandwich system is identified by measuring the kernels up to
the second-order at most. In fact, Isobe and Sato [21] showed that
h(t), g(t) and y(x) could be determined from the kernels obtained with

the Gaussian white noise inputs of different power.

IV Biological applications

In the past decade, the theory has seen a number of practical
applications 1in biological systems' analysis, particularly in the
vertebrate visual system. As would be expected from any pioneering
effort, many errors, theoretical as well as practical, have been made
in the process and, more important, as many theoretical developments

and 1ingeneous technical improvements have been made([5]. In this

et
(e
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section, we will discuss the neural network analysis in the vertebrate
retina which 1is one of the few biological preparations in which
Wiener's analytical method has been extensively applied[22]. In
untangling the «circuitry 1in the retina, white-noise modulated test
current can be injected into one neuron and resulting responses can be
recorded from other neurons. By cross-correlating the input with the
output, one defines the transfer function between the two neurons. If
the transmission 1is (quasi) 1linear, the first-order kernel is the
impulse response of the system: if the transmission 1is nonlinear,
higher order kernels will describe the deviation from the linear
transmission. 1In Fig. 3 are shown results of current-injection
experiment in which white- noise modulated current (flat power from
near dc to 50HZ with zero mean) was injected into one horizontal cell
and resulting response was recorded from another horizontal cell
located about 400 microns away. the power spectra of the injected
current and potential changes registered by the second electrode
matched almost exactly, i.e., the system (current flow between two
horizontal cells) could respond to much faster input.(Such input could
not be used from some technical difficulties.) The spread of current
among the cells wes quasi-linear as we expected from the fact that the
cells formed a laminar. By Fourier transforming the first order
kernel, one obtains the gain and phase of the transmission was
constant to indicate that the horizontal cells formed a constant-gain
lowpass filter. On the other hand, the transmission froﬁ horizontal
to amacrine cells has large second-order nonlinear component depicted

in the second-order Wiener kernel shown in Fig.4.



pespite obvious advantages as mentioned in the first section, its
practical applications made so far have not been an unqualified
success. The difficulties arise from several factors; 1)
Interpretation of higher order kernels is problematic. With a few
exceptions, one of which is the 'sandwich system', there is no formal
correspondence between a system's physical structure and kernels. 2)
In many cases, the relationship between the input, white-noise
signals, and the output, resulting neural responses, can not be seen
intuitively. The relationship can only be obtainde by computing
kernels, a process difficult to perform 'on-line'. Often it is not
possible to draw preliminary conclusions during experiments or to
modify them obsering the results of on-going experiment. 3) A
comprehensive computing system is a prerequisite for an efficient
white-noise analysis. The difficulties, ° however,: are not
insurmountable, theoretically or technically and they may: be dissolved

through future efforts.
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