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Theoremn. Suppose that a non-singular Morse-Smale

flow on 83 has a single closed orbit hO of index 2, a8 single

closed orbit hn+1 of index 0, and n closed orbits h1, h2,..,
h of index 1.
n .
(4) If all of the closed orbits of index 1 are untwisted,
then the link consisting of all closed orbitsis trivial.
(B) If all of the closed orbits of index 1 are twisted,

then by re-ordering h1, h2,..., hn appropriately, we find k
such that

(a) hy and hy,, make the Hopf link,

(b) for any i<k, hi is a (2,pi)—cable of hyyqo and

(¢c) for any j>k, hj+1 is a (2,qj)—cable of hj’

where P; and q;j are arbitrary odd integers. ( See Figure 1. )

Corollary. Suppose that a non-singular Morse-Smale flow
on 83 hés three closed orbits. Then there exists just one
closed orbit of index i for each i ( 0gig?2 ), and the
closed orbits make either the trivial link or the link as in
Figure 2, where h is the orbit of index 1 and L, is a (2,p)-

cable of h ( p = odd ), and one of L, and L, is of index 0
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and the other is of index 2.
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(This figure shows the case n=3,k=2.)

Figure 1. Figure 2.
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1 Definitions.

In this section we recall fundamental definitions and
properties briefly. For further details see [F3],(M],(Sm] .
On the low dimensional topology see [R].

A non-singular Morse-Smale flow ( or an NMS flow for short )

on a manifold M% is a flow without fixed points which satisfies
the following conditions:
(1) The non-wandering set consists entirely of finite
number of closed orbits.
(2) The Poincafé map for each closed orbit is hyperbolic.
(3) If ¢ and c¢' are closed orbits, then the stable
manifold of ¢ and the unstable manifold of c¢' intersect
transversely.
Then the dimension of the unstable bundle of a closed orbit
¢ 1is called the index of c¢. A closed orbit is called untwisted
if its unstable bundle is orientable. Otherwise it is called
twisted.
Associated to an NMS flow, we can consjder a round handle

decomposition of M.

Definition 1.1. (a) Let X", Y* be manifolds. X"
is obtained from " by attaching a round k-handle if
(1) There are disk bundles Ei and Eﬁ_k—1 over S1, and
k-1

(2) an embeddin 0:9EX x EV-
g S u
P a0 U (g @ gRK-TY,
8 S u

—> 9Yn such that

k n-k-1

(b) The total space of Es G)Eu is called a round

k-handle.
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(¢) A round handle decomposition for X° is a filtration

XOCX1CX2C...C.Xk =X,
where each Xi is obtained from Xi—1 by attaching a round handle,
D. Asimov and J. Morgan connected an NMS flow with a round

handle decomposition as follows.

Proposition 1.2 [A],IM] . If 2 manifold M has an NMS
flow, then M has a round handle decomposition whose core circles
are the closed orbits bf the flow. Conversely, if M has a
round handle decomposition, then M has an NMS flow whose closed

orbits are the core circles of round handles.

A round handle is called untwisted if its core circle is an
untwisted closed orbit. Otherwise it is called twisted.
In the rest of this paper we consider an NMS flow on 83

Then a round 1-handle H is of the form H = E; (5] El and the

1

u of ©H 1is two coples of annuli if H is

part 3E1S X E
untwisted, or an annulus if H 1is twisted. Each annulus is
mapped to a small tubular neighborhood of a circle on the boundary

surface of 3-manifold. Such a circle is called the attaching
circle of H.

2 Preliminaries.

In this section we give preliminary lemmas which are necessary

to prove our main theorem. Let an NMS flow be given on 83.

Lémma 2.1. Let U Dbe a solid torus in 3 such that

the flow is outwardly transverse to the boundary QU of U.

LF
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Let H be an untwisted round 1-handle with core h, which is

attached to U. Then the resulting manifold UUH is one of the
following. |

(A) A solid torus with a small tubular neighborhood of an

interior circle deleted.

(B) A solid torus, in which U and h are put trivially
( see Figure 2.1 ).

(X

(a)

Figure 2.1.

Proof. Let K1 and K2 be attaching circles of H on
dU. If [K1]=[K2]= 0 in H1(8[U then four cases as in

Figure 2.2 occur.

(c)

Figure 2.2.

c



In the case (a), the boundary of UUH contains 82 as an
connected component. S2 bounds a 3-ball and the flow is
transverse to Sz. But such a flow in a 3-ball has a fixed

point. This contradicts to our assumption. In the case (b) or
(d), the Klein bottle is embedded in 83. This is a contradiction,
In the case (c), we have (A) in our Lemma. If [K;J= 0 and

[K21= alm 1+ b[lu]# 0, where m  and 1, are the meridian and the
longitude of U. Then a = 1k(IK,},[ul) = 1k(lK,1,lu}) =0,

where u is the core of U and 1k( , ) denotes the linking
number. Thus b = *1, and we obtain (B). If [K11=[K2]# 0 it

is easy to show that we have (A). This completes the proof. [ ]

Lemma 2,2 Let U be a solid torus in 83 such that
the flow is outwardly transverse to the boundary of U. Let H
be a twisted round 1-handle with core h, which is attached to
U. Let S = S2-(UUH). Then UUH is one of the following.

(A) A solid torus.

(B) The exterior of a (2,p)-torus knot, and S is the
tubular neighborhood of the knot, where p 1is an arbitrary odd

integer ( see Figure 2.3 ).

Figure 2.3.
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Proof. Let K Dbe the attaching circle of H on 3U.
Let m, and 1u be the meridian and the longitude of U,
If [K}= 0 or [Kl=[m] in H.](S U), then the projective plane P
is embedded in s3. This is a contradiction. Suppose [K]=
a[mu]+ b[l‘}, where b # 0. We may assume b> 0 and -b/2<a<{ b/2.
If b=1, then a = 0 and UUH is a solid torus. This gives (A).
Assume b>1. by the solid torus theorem ([R] p.107), the boundary
torus Q(UUH) a2 bounds a solid torus on at least one side. But

T,(UUH) = & h, us W’ =1Y¢# 7,

I

where h and u are the generator of the fundamental group
represented by the orbit h and the core u of U, Thus S

is a solid torus and UUH 1is a knot exterior. Hence

H, (UVUH) = ZZ‘. So b is odd. The fundamental group of the boundary

b and hu*X, where x is the integer

9(UUH) is'generéted by u
such that ax = -1 (mod b) and 0<x<b. Let .y: 8(UUH) —» DS
be the inverse of the attaching map of S to UUH, and assume
that the induced map ,: H1( 9(UVH)) — H.](SS) is given by
\b.x_([ub_]) =qMmJ+ ril]] and
U, (Lhu™1) = stm J+ tL173,
where m and 1S are the meridian and the longitude of § and
qt - rs = #1. Then w;1([ms]) = t(t[ubJ- r[hux]). Hence we have
T, (OUEUS) = <hy ws b2u® =1, oP¥ ()T =17
We denote this group by G. Since (UUH)US = 83, G should be

a trivial group. We prepare

Lemma 2.3, G is trivial if and only if t = 0, r = #1,

and x = (bx1)/2 ( consequently a = F2 ),
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Proof of Lemma 2.3. Let
T-<h, T BP0 BT =1 ) .

Note that E‘ is a surjective image of G, and G ={1} implies

T =1, By putting ¥ = U* and W = (EV)—1, & is re-written as
T= <R, % % B2=%0 =% =% =1> .

;
By a famous theorem of H. Coxeter [CMl, G ={i} if and only if

r = 1., Thus G ={1} implies r = #1, Conversely, assume r

1]
=+
-t

.

Then G =<u; uz(-Xitb)+b= 1 > . Hence it is necessary that t
and x = (bx1)/2. This completes the proof. 1

We continue the proof of Lemma 2.2. By Lemma 2.3, r = %] and
w%([ubl) = qlmJ+(1J . Under an appropriate diffeomorphism
of S, we may assume w*([ub]) = [1S]. Since the core of the part
of 9H attached to @S (with respect to the flow with the reversed
direction) represents h?  in ﬂH(H), the attaching circle of H
on 9S is the longitude of S. Hence this case reduces to the

case of b =1, by reversing the direction of the flow. So HU s

is a solid torus and U is an unknotted torus. This completes

the proof. []
3 Proof of Theorem and Corollary.
Proof of Theoren. Let hi be as in Theorem and Hi

be a round handle with core hi' By re-ordering hi's if

necessary, we may assume that H, is attached to U H..
it 0¢jsi I
Let H(i) = U H, (0%iSn+1 ).
0sjsi

(A) Assume that all of h1, h2,..., hn are untwisted.

g
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We prove, by induction on i, that H(i) is a solid torus for
any 1 =20,1,...,n. For i = 0, it is trivial. Assume that it
is proved for i< n. Applying Lemma 2.1 to U = H(i) and H = Hepqo
we have two cases of H(i+1). If H(i+1) 4is as (A) in Lemma 2.1,

its boundary is the disjoint union of two tori and the flow is
outwardly transverse to these tori. To make 83 whi.ch is without

boundary, we must connect these tori by Hi+2lJHi+3(J"'LJHn+1f

Hence we can choose a simple closed curve which intersects an

embedded torus ( each component of the boundary of H(i+1) ) in
g3

just one time. This leads to a contradiction. Thus H(i+1)
is a solid torus, and the induction is completed. Note that H(i)

and h,,, are put trivially in H(i+1). Thus it is proved

inductively that h h1"“’hn are put trivially in the solid torus

O’

H(n). Attaching H to H(n) so that H(n)UH_,, =8, we

n+1 +1

can prove (A) of Theorem immdediately.

(B) Assume that all of h,,hs,...,h are twisted. Let k
be the maximum number such, that H(i) is a solid torus for every
i=0,1,...,k. If k =n then (B) of Theorem is immediate.
We assume k< n. By reversing the direction of the flow, we may
regard that H, 1is attached to H, ,U... L}Hn+1. Let S(i) =

U H.. Note that S(k+2) is a solid torus by Lemma 2.2.
i¢jgn+ |

We prove that S(i) is a solid torus for i = k+1,k+2,...,nt+1.

Let 1 Dbe the minimum number so that S(i) is a solid torus for
every i = 1,141,...,nt+1. We will prove 1 = k+1. Since S(k+2)
is a solid torus, S(k+1) is also s solid torus by Lemma 2.2. So
1 # k+2., Assume 12> k+2. Let s be the core of the solid torus

S(1). Then 71’1(8(1)) = {sd» = 7Z, and
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W}(S(l—1)) = <h1_1,s; n? b D , where b is an odd integer

1-1°8
greater than or equal to 3. Inductively we have
_ . 2 b _ 2 _
‘I‘I(S(k+2)) —<hk+2’hk+3’...’hl—1’s’ hl_,‘S - 1, hl—z - I‘l_z,k...,
2
Bz = iz ,

where r.,  is a word in h.,..,
jt1 ;
<}ﬁ,1’ S; h§_1sb = 1> as a subgroup. Hence this group is not 2,

hj+2"”’h1—1’s . This group contains

This contradicts to the fact that S(k+2) is a solid torus. Hence

1 = kt1. Now the proof of (B) of Theorem is easy.

The pfoof of Theorem is completed. ' ' ]
Proof of Corollary. J. Franks proved that the number Ai
of untwisted closed orbits of index i of-any NMS.flow on 53

satisfies that A~ 21, A,.21, and A zmax(AO-T,A -1). Thus there

0 2= 1 2
exists just one closed orbit of index i for each i. The rest of
Corollary is immediately proved by Théorem. []
4 Concluding remarks.

Our last aim is the complete classification on links of closed

orbits of NMS flows. We give some results for our aim.

(1) The author obtained the complete classification of links

s3.

of closed orbits of any NMS flow with at most 5 closed orbits on
For the result, consult [Sa].
(2) K. Yano [Y] proved that any NMS flow on s> has at least

two unknotted closed orbits.

/ 0
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