ON THE STABLE MANIFOLDS OF NONWANDERING SETS

KUPKA-SMALE DIFFEOMORPHISMS

KEN SAWADA 沢田 腎

A diffeomorphism f is said to have the Kupka-Smale property if all periodic point of f are hyperbolic and for any periodic points p and q, the stable manifold $W^{\mathbf{S}}(p)$ intersects the unstable manifold $W^{\mathbf{U}}(q)$ transversely.

The purpose of this paper is to give a simple example of a diffeomorphism f with the Kupka-Smale property for which the set of periodic points of f, Per(f) is dense in the nonwandering set of f, $\Omega(f)$ but $\bigvee_{\mathsf{P} \in \mathsf{Per}(f)} \mathsf{W}^{\mathsf{S}}(\mathsf{p})$ is not dense in $\mathsf{W}^{\mathsf{S}}(\Omega(f))$.

EXAMPLE

Our example of a diffeomorphism f is defined on the annulas, a product of the interval I = (1, 2) and the circle S^1 , by composing three diffeomorphisms ρ , G and H on I \times S^1 i.e., f = $\rho \circ G \circ H$.

First we define a diffeomorphism H.

Let $\{t_n\}$ be a sequence of rational numbers in I such that $t_1 < t_2 < \ldots < t_n < \ldots$ and $t_n \to \sqrt{2}$ as $n \to \infty$. We construct a orientation preserving diffeomorphism h on I as follows:

- (1) t_{n} is a hyperbolic fixed point with $h^{\,\prime}(t_{n}^{\,\prime})\,>\,1$ ($<\,1$) for even n (odd n)
 - (2) $\sqrt{2}$ is a fixed point with $h'(\sqrt{2}) = 1$
 - (3) $h^m(t) \rightarrow \sqrt{2}$ as $m \rightarrow \infty$ if $t \in (\sqrt{2}, 2)$ $h^m(t) \rightarrow t_n \text{ as } m \rightarrow \infty \text{ for some odd } n \text{ if } t \in (1, \sqrt{2}) \bigcup_n \{t_n\}.$

where h'(t) is the derivative of h at t.

We define a diffeomorphism H by the formula H(t, θ) = (h(t), θ) for any (t, θ) \in I \times S¹.

Next we define a diffeomorphism G.

Let g_k be the time one map of a flow ϕ_t on S^1 such that ϕ_t ($\theta + 2\pi/k$) = $\phi_t(\theta) + 2\pi/k$ for any $0 \le \theta \le 2\pi$ and the flow has 2k-hyperbolic fixed points (see Figure 1). Now we construct a smooth isotopy g: I \times $S^1 \to S^1$ which satisfies the followings:

- (4) $g(t_n, \theta) = g_{k(n)}(\theta)$ for any n.
- (5) $g(\sqrt{2}, \theta) = \theta$
- (6) $\left|\frac{\partial}{\partial t}g(t, \theta)\right| < 2\pi$ for any $(t, \theta) \in I \times S^1$

where $\{k(n)\}$ is a sequence of integers such that k(1) < ... < k(n) <

... and $k(n) \cdot t_n$ is an integer for any n,

We define a diffeomorphism G by the formula $G(t, \theta) = (t, g(t, \theta))$ for any $(t, \theta) \in I \times S^1$.

Finally let ρ be a map such that for any $(t, \theta) \in I \times S^1$, $\rho(t, \theta) = (t, \theta + 2\pi \cdot t)$.

LEMMA. A diffeomorphism f has the Kupka-Smale property.

PROOF. First we show Per(f) is dense in $\Omega(f)$. By the definition of h, $\Omega(f) \subset \bigcup_n \{t_n\} \times S^1 \cup \{\sqrt{2}\} \times S^1$. Since $f \mid \{\sqrt{2}\} \times S^1$ is the irrational ($2\pi\sqrt{2}$) rotation, all elements in $\{\sqrt{2}\} \times S^1$ are nonwandering

points but not periodic points. In $\{t_n\} \times S^1$, $f(t_n, \theta) = (t_n, g_{k(n)}(\theta) + 2\pi \cdot t_n)$. Since $g_{k(n)}$ commutes with $2\pi/k(n)$ -rotation and $2\pi \cdot t_n = 2\pi N/k(n)$ for some integer N, $f^{k(n)}(t_n, \theta) = (t_n, (g_{k(n)})^{k(n)}(\theta))$. By the definition of $g_{k(n)}$, there are no nonwandering points of f except for 2k(n)-periodic points of f. Therefore $\Omega(f) = \{\sqrt{2}\} \times S^1 \cup (\bigcup_n (t_n, \theta_n))$ where θ_n is a hyperbolic fixed point of $g_{k(n)}$. Since $k(n) \to \infty$ as $n \to \infty$, $\theta_n \to 0$. Therefore Per(f) is dense in $\Omega(f)$.

Next we show that periodic points are hyperbolic. From now on, we identify the tangent space of I \times S¹ at x = (t, θ), T_x(I \times S¹) with T_t(I) \times T_{θ}(S¹). Then the derivative of f at x, Df(x) is represented by

$$Df(x) = \begin{bmatrix} A(x), & 0 \\ C(x), & B(x) \end{bmatrix}$$

where A(x) = h'(t), $B(x) = \frac{2}{2\theta}g(x)$ and $C(x) = h'(t)(2\pi + \frac{2}{\partial t}g(x))$. By definitions of h and g, and by (6), A(x), B(x) and C(x) > 0.

Let $p = (t_n, \theta_n) \in Per(f)$ and ℓ be the period of p. Then $|A(p)| = |h'(t_n)| \neq 1 \text{ and } |B(p)| = \left|\frac{d}{d\theta}g_{k(n)}(\theta_n)\right| \neq 1 \text{ by definitions of } h \text{ and } g_{k(n)}.$ Since

(7)
$$Df^{\ell}(p) = \begin{bmatrix} (A(p))^{\ell}, & 0 \\ (*), & (B(p))^{\ell} \end{bmatrix}$$

where (*) > 0, the eigenvalues of $\mathrm{Df}^{\ell}(p)$, $\mathrm{A}(p))^{\ell}$ and $(\mathrm{B}(p))^{\ell}$ are ones of which absolute values are not equal to 1. Hence p is hyperbolic.

We finally show that for p, q \in Per(f), W^u(p) intersects W^S(q) transversely. It suffices to show in the case of p and q are saddle points. Hence we may assume that p \in {t_n} \times S¹ and q \in {t_{n+1}} \times S¹ for some even n (if p and q are saddle points contained in the same invariant circle, then W^u(p) and W^S(q) hase no intersection point). Then A(p) > 1 and A(q) < 1. Let ℓ and ℓ ' be periods of p and q respectively. Since T_p(W^u(p)) is the eigenspace corresponding to the eigenvalue (A(p))^{ℓ} of Df^{ℓ}(p), the slope of v = (v_t, v_θ) \in T_p(W^u(p)), v_θ/v_t = (*)/[(A(p))^{ℓ} - (B(p))^{ℓ}] > 0 from (7). By the same argument, for w = (w_t, w_θ) \in T_q(W^S(q)), w_θ/w_t < 0. If W^u(p) and W^S(q) have a nontransversal intersection point x, then for any v' = (v'_t, v'_θ) \in T_x(W^u(p)), the slope of Df^{m·a}(x)(v') \rightarrow w_θ/w_t as m \rightarrow where a = ℓ · ℓ '.

On the other hand, since

$$Df^{m \cdot a}(x) = Df(x_{ma-1}) \cdot \cdots \cdot Df(x) = \begin{bmatrix} A(x_{ma-1}) & \dots & A(x), & 0 \\ (**) & & B(x_{ma-1}) & \dots & B(x) \end{bmatrix}$$

where $x_i = f^i(x)$ and (**) > 0, the slope of $Df^{ma}(x)(v') = [B(x_{ma-1})...$ $B(x)/A(x_{ma-1})...$ $A(x)] \cdot v_0'/v_t' + (**)$. Taking x sufficiently near to p, $v_0'/v_t' > 0$. hence the slope of $Df^{ma}(x)(v') \rightarrow \infty$ as $m \rightarrow \infty$ since $A(x_i) \rightarrow A(q) < 1$ and $B(x_i) \rightarrow B(q) > 1$. Therefore $W^u(p)$ intersects $W^s(q)$ transversely.

For f, $\bigcup_{W^{S}(p)} W^{S}(p)$ is not dense in $W^{S}(\Omega(f))$ since $(\sqrt{2}, 2) \times S^{1} \subset W^{S}(\{\sqrt{2}\} \times S^{1})$ by (3) and $\{\sqrt{2}\} \times S^{1} \subset \Omega(f)$ - Per(f).

