74

§1. Notations and definitions

Given A, B \in GL(2, \mathbb{Z}) such that AB = BA, and m, n \in \mathbb{Z} , we construct a T^2 -bundle over T^2 denoted by

$$\pi : M(A,B;m,n) \rightarrow S,$$

as follows.

Denote by $\begin{bmatrix} \times \\ y \end{bmatrix}$ the point of $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ corresponding to $\begin{pmatrix} \times \\ y \end{pmatrix} \in \mathbb{R}^2$. Let $F = T^2$, $S = T^2$, and we define . $M(A,B;0,0) = F \times \mathbb{R}^2/\sim$

where

$$\left(\left[\begin{array}{c} s \\ t \end{array} \right], \left(\begin{array}{c} \times +1 \\ \times \end{array} \right) \right) \sim \left(\left[A \left(\begin{array}{c} s \\ t \end{array} \right], \left(\begin{array}{c} \times \\ \times \end{array} \right) \right),$$

and

$$\left(\begin{bmatrix} s \\ t \end{bmatrix}, \begin{pmatrix} x \\ y+1 \end{pmatrix} \right) \sim \left(\begin{bmatrix} B \begin{pmatrix} s \\ t \end{pmatrix} \end{bmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right).$$

Denote the point of $M_0 = M(A,B;0,0)$ which corresponds to $\left(\begin{bmatrix} s \\ t \end{bmatrix}, \begin{pmatrix} \times \\ y \end{pmatrix}\right)$, by $\left[\begin{pmatrix} s \\ t \end{pmatrix}, \begin{pmatrix} \times \\ y \end{pmatrix}\right]$ or $\begin{bmatrix} s,\times \\ t,y \end{bmatrix}$. Then $\pi:M_0\to S$ is a T^2 -bundle over T^2 , where π is defined by $\pi\begin{bmatrix} s,\times \\ t,y \end{bmatrix}=\begin{bmatrix} \times \\ y \end{bmatrix}$. Let D be a small disk in S centered at $\begin{bmatrix} 1/2\\1/2 \end{bmatrix}$ with radius ϵ , and let

$$M(A,B;m,n) = (M_0 - \pi^{-1}(Int D))U(F \times D)$$

where $F \times \partial D$ is attached to $\pi^{-1}(\partial D)$ by the homeomorphism $h: \pi^{-1}(\partial D) \to F \times \partial D$:

$$h\left[\begin{pmatrix} s \\ t \end{pmatrix}, \varepsilon(\theta) \right] = \left(\left[\begin{pmatrix} s \\ t \end{pmatrix} + (\theta/2\pi)\begin{pmatrix} m \\ n \end{pmatrix}\right], \left[\varepsilon(\theta)\right]\right)$$
 where
$$\varepsilon(\theta) = \begin{pmatrix} 1/2 + \varepsilon\cos\theta \\ 1/2 + \varepsilon\sin\theta \end{pmatrix}.$$

Define the map $\pi : M(A,B;m,n) \rightarrow S$

$$\pi \begin{bmatrix} s, \times \\ t, y \end{bmatrix} = \begin{bmatrix} \times \\ y \end{bmatrix} \text{ if } \begin{bmatrix} \times \\ y \end{bmatrix} \in \mathbb{D}, \text{ and }$$

$$\pi \Big(\begin{bmatrix} s \\ t \end{bmatrix}, \begin{bmatrix} \times \\ y \end{bmatrix} \Big) = \begin{bmatrix} \times \\ y \end{bmatrix} \text{ if } \begin{bmatrix} \times \\ y \end{bmatrix} \in \mathbb{D}.$$

Then this is a T^2 -bundle over T^2 .

Every T^2 -bundle over T^2 is isomorphic to this form,where the pair (A,B) represents the monodromy, and the pair (m,n) represents the obstruction for constructing a cross-section. Corresponding to a T^2 -bundle over T^2 , $\pi:M\to S$, there is an exact sequence

$$1 \rightarrow \pi_1 F \rightarrow \pi_1 M \rightarrow \pi_1 S \rightarrow 1$$

where F is a fiber. We call this the associated exact sequence.

§2. Fundamental lemmas.

Proposition 1. $H_1(M(A,B;m,n))$ is isomorphic to $\mathbb{Z}^2 \oplus (\mathbb{Z}^2/K)$, where K is the subgroup of \mathbb{Z}^2 generated by

 $\begin{pmatrix} m \\ n \end{pmatrix}$ and the column vectors of A-E and B-E (E stands for $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$).

In the following proposition, we study about typical bundle isomorphisms.

Proposition 2. Let A,B,A',B' \in GL(2,Z) such that AB = BA and A'B' = B'A'. Let α , β , σ , τ and α' , β' , σ' , τ' are canonical generators of π_1^M and π_1^M respectively, where M = M(A,B;m,n) and M' = M(A',B';m',n').

(1) Assume $A' = A^p B^r$, $B' = A^q B^s$ and $\binom{m'}{n'} = \delta \binom{m}{n}$ for some $P = \binom{p}{r} \binom{q}{r} \in GL(2,\mathbb{Z})$ where $\delta = ps-qr = \pm 1$.

Then there is a bundle isomorphism $f: M' \to M$ such that

$$f_{\sharp}(\sigma') = \sigma$$
, $f_{\sharp}(\tau') = \tau$ and $f_{\sharp}(\alpha') = \alpha^p \beta^r$, $f_{\sharp}(\beta') = \alpha^q \beta^s$

where f: S' \rightarrow S is a corresponding homeomorphism between base spaces and $\alpha = \pi_{\#}(\alpha)$ etc.

(2) Assume A' = $P^{-1}AP$, B = $P^{-1}BP$ and $\binom{m}{n} = P\binom{m'}{n}$ for some P = $\binom{p}{r}$ \in GL(2, \mathbb{Z}). then there is a bundle isomorphism f : M' \rightarrow M such that

$$f_{\#}(\alpha') = \alpha$$
, $f_{\#}(\beta') = \beta$ and

$$f_{\sharp}(\sigma') = \sigma^p \tau^r$$
, $f_{\sharp}(\tau') = \sigma^q \tau^s$.

(3) Assume A' = A, B' = B and $\binom{m'}{n} - \binom{m}{n}$ $= (A-E)\binom{p}{q} + (B-E)\binom{k}{l} \quad \text{for some } p,q,k,l \in \mathbb{Z}. \quad \text{Then there is}$ a bundle isomorphism $f: M' \to M$ such that $f_{\#}(\alpha') = \sigma^{k'}\tau^{l'}\alpha, \quad f_{\#}(\beta') = \sigma^{p'}\tau^{q'}\beta \quad \text{and}$ $f_{\#}(\sigma') = \sigma, \quad f_{\#}(\tau') = \tau,$ where $\binom{k'}{l} = B\binom{k}{l}$ and $\binom{p'}{q} = A\binom{p}{q}$.

Remark. The last result (3) of the above proposition corresponds to the fact that the obvstruction class to construcing a cross section lies in $H^2(S, \widehat{\pi}_1(F))$ ($\widehat{\pi}_1(F)$) is the locally constant sheaf whose stalk at $x \in S$ is naturally isomorphic to $\pi_1 F_x$, where $F_x = \pi^{-1}(x)$, and that $H^2(S, \widehat{\pi}_1(F))$ is isomorphic to the quotient group $\mathbb{Z}^2/\langle A-E, B-E \rangle$ where $\langle A-E, B-E \rangle$ is the subgroup generatedby the column vector of A-E and B-E.

§3. Main results.

The problem of bundle isomorphisms is reduces to the group theory of the associated exact sequences by the following theorem.

Theorem 1. Let $\pi:M\to S$ and $\pi':M'\to S'$ be T^2 -bundles over T^2 . Then the following statements are equivalent.

- 1) They are bundle isomorphic to each other.
- The associated exact sequences of them are isomorphic to each other, that is, there exist isomorphism of groups $\psi:\pi_1\mathsf{M}'\to\pi_1\mathsf{M}$ and $\widehat{\psi}:\pi_1\mathsf{S}'\to\pi_1\mathsf{S}$ such that $\pi_\#\circ\psi=\widehat{\psi}\circ(\pi')_\#$.

Corollary. Two fibrations M(A,B;m,n) and M(A',B';m',n') are isomorphic if and only if there exist $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ and $P \in GL(2,\mathbb{Z})$ as follows:

$$A^{p}B^{r} = PA'P^{-1}$$
, $A^{q}B^{s} = PB'P^{-1}$ and $P\begin{pmatrix} m' \\ n \end{pmatrix} - \begin{pmatrix} m \\ n \end{pmatrix} \in \langle A-E, B-E \rangle$,

where $\langle A-E, B-E \rangle$ is the subgroup of \mathbf{Z}^2 generated by the column vectors of A-E and B-E.

Theorem 2. Let $\pi: M \to S$ and $\pi': M' \to S'$ be T^2 -bundles over T^2 .

- (1) rank $(H_1M) = 4$ if and only if M = M(E,E;0,0), which is a 4-dimensional torus.
- (2) Assume rank (H_1M) $\stackrel{\star}{\uparrow}$ 3. Then the above fibrations are

isomorphic if and only if $\pi_1 M$ and $\pi_1 M$ are isomorphic.

Any fibration has a simple expression as follows:

Theorem 3. Any T^2 -bundle over T^2 is isomorphic to one of the following types:

M(A,B;m,n) where $B=\pm E$.

Furthermore, we may assume that A satisfies the following conditions:

- (1) if det A = -1, trace $A \ge 0$,
- (2) if det A = 1 and B = -E, trace $A \ge 2$ and A = E,

Remark. Under the above assumption (2), B = E if and only if the subgroup of $GL(2,\mathbb{Z})$ generated by A and B is a cyclic group. The conjugacy class of this group in $GL(2,\mathbb{Z})$ is an invariant of the associated exact sequence. In fact, if $\rho: \pi_1S \to \operatorname{Aut}(\pi_1F)$ is the homomorphism defined by

 $\rho(\pi_{+}(x))(y) = x^{-1}yx (x \in \pi_{1}M, y \in \pi_{1}F \subset \pi_{1}M),$

then Im p is mapped onto the above group by a global

isomorphism from $\operatorname{Aut}(\pi_1 F)$ to $\operatorname{GL}(2,\mathbb{Z})$.

Theorem 4. Assume M = M(A,B;m,n) and M' = M(A',B';m',n') satisfy the condition of Theorem 3. Denote by $\langle A-E \rangle$ the subgroup of of \mathbb{Z}^2 generated by the vectors of A-E, and similarly for $\langle A-E, 2E \rangle$.

- (0) If M and M' are bundle isomorphic to each other, then B=B'.
- (1) Assume, B = B' = E. Then M is bundle isomorphic to M', if and only if there exists a matrix $P \in GL(2,\mathbb{Z})$ such that
- ii) $PA'P^{-1} = A$ or $PA'P^{-1} = A^{-1}$ and ii) $\binom{m}{n} P\binom{m'}{n} \in \langle A-E \rangle$.
 - (2) Assume, B = B' = -E. Then M is bundle isomorphic to M', if and only if there exists a matrix $P \in GL(2,\mathbb{Z})$ such that
 - i) $PA'P^{-1} = \pm A$ or $PA'P^{-1} = \pm A^{-1}$ and ii) $\binom{m}{p} - P\binom{m'}{p} \in \langle A-E, 2E \rangle$.
- §4. Homeomorphism types.

Let $\pi: M \to S$ be a T^2 -bundle over T^2 . If

rank (H_1M) \ddagger 3, the bundle isomorphism type is determined by π_1M (Theorem 2).

Now we consider the case when rank $(H_1M) = 3$. According to proposition 1, rank $(H_1(M(A,B;m,n)) = 3$ if and only if the rank of the 2×5 matrix $\left(A-E, B-E, \frac{m}{n}\right)$ is equal to 1. Hence in view of Theorem 3, M is isomorphic to one of the following forms:

- 1) $M\left(\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}, E; m, 0\right) (k \ge 0)$
- 2) $M\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), E; 0, n\right)$ or
- 3) $M\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, E; m, -m \right)$.

Furthermore, we have:

Proposition 3. If rank $(H_1M) = 3$, M is homeomorphic to one and only one of the following forms:

- 1) $M\left(\begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix}, E; o, o \right) (d>0)$
- 2) M((1, 0), E; 0, n) (n=0 or 1)

Corollary. Let $\pi: M \to S$ and $\pi': M' \to S'$ be $T^2\text{-bundle over} \quad T^2. \quad \text{Assume that} \quad M \quad \text{and} \quad M' \quad \text{are both orientable}$ or both non-orientable, and $\text{rank } H_1M = \text{rank } H_1M' = 3$. Then $M \quad \text{is homeomorphic to} \quad M' \quad \text{if and only if} \quad H_1M \cong H_1M'.$

Remark. The orientablity of M is an invariant of π_1 M. In fact, let $\rho: H_1M \to \operatorname{Aut}([\pi_1,\pi_1])$, where $[\pi_1,\pi_1]$ is the commutator subgruop of π_1M and ρ is the homomorphism which is defined similarly to the remark to Theorem 3. When rank $H_1M = 3$, by the above proposition, we see that ρ is a trivial map if and only if M is orientable.

This remark and Theorem 2 imply:

Theorem 5. Let $\pi: M \to S$ and $\pi': M' \to S'$ be T^2 -bndles over T^2 . Then M is homeomorphic to M' if and only if π_1M is isomorphic to π_1M' .