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Local Covariant Operator Formalism of Non-Abelian Gauge Theories
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A local and covariant operator formalism of non-Abelian
gauge theories 1s formulated on the basis of BRS(Becchi-Rouet-
Stora) invariance. By this invariance as a quantized version
of local gauge invariance, criteria for physical states and
observables are given so as to preserve the principles of
guantum theory : elimination of negative norms, physical
S-matrix unitarity, etc. In this framework of relativistic
guantum field theory, the logical structure of quark confinement

problem is clarified together with its criteria.

1. INTRODUCTION

All the four types of interactions ruling the nature are
nowadays believed tTo be intermediated universally by gauge
fields. Apart from (the traditional) quantum electrodynamics

(QED), all these are non-Abelian gauge fields, which have been

so far treated only by the path-integral method for lack of a
' consistent operator formalism. In spite of the powerfulness of

the path-integral formalism as a calculational method, the



absence in it of such standard notions as the state vector space

and the Heilsenberg operators obstructs us to get an insight into

the generaland fundamental aspects of the logical structure of
the theory in a non-perturbative fashion. The understanding of
these aspects seems quite necessary not only at such abstract

level as the problems to assure consistency of the theory and

unitarity of the physical S-matrix, etc., but also for the

resolution of the outstanding problem of guark confinement,

where the question "what are‘physically observable objects of
theory ?" should be answered.
We discuss, in this article, these problems on the basis

of the local and covariant Heisenberg-operator formalism of
1,2

non-~Abelian gauge theories obtained by T. Kugo and myself,
the essence of which is explained in §2. Its application to
the quark confinement is discussed in §3 and §4, where the
general consequences derived from such basic ingredients of
relativistic quantum field theory (QFT) as Lorentz covariance,
locality, etc., work quite effectively as technical tools, in

combination with the subsidiary condition specifying physical

states, the notion of observables and with the "Maxwell"

equation. Throughout this formalism, a crucial role 1is played

by a peculiar symmetry transformation, BRS(Becchi-Rouet-Stora)

3

transformation , which is, roughly speaking, local gauge

transformation with an unphysical scalar fermion field called

Faddeev-Popov ghostu as its infinitesimal parameter function.
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2. INDEFINITE METRIC AND SUBSIDIARY CONDITION

~ Kinematical "confinement" by quartet mechanism -

The major difficulty encountered in formulating the covari-
ant local operator formalism of gauge theories is the necessity

to introduce an indefinite metric in the theory, which means the

presence of negative probabilities. In order to achieve a
physically meaningful interpretation, we should exclude unphysi-
cal negative norms from the "physical world" of the theory which

should be defined suitably by setting up a subsidiary condition

to specify a physical state. By this condition, the physical

subspace consisting of physical states is picked out in

phys _
the total state space Y with indefinite metric.

Theorem l2 If the following three conditions are satisfied,
(0) hermiticity of the Hamiltonian H

(= pseudo-unitarity of the total S-matrix 8),
H

(i) time invariance of ¥ cu

phys® ¥phys © Yonys
(= Sv%pys = S—luphys = Yonys) >
@3i) positive-semidefiniteness of vbhys:

|o> €Uy o = <e]e> > 0,
then physical scattering processes are described consistently
in the physical Hilbert space thys = 55;;;765
(%% = %;;ys n‘uphysz zero-norm suspace of ‘vbhys) invterms
of the physical S-matrix Sphys defined by

n 7N\ A
sphyslq» = S|¢> for |o>€ 'Uphys, o> = |q>>+uoevphys/vo.



These H and S represent the ordinary state space

phys phys
and S-matrix in the theory without indefinite metric and the
. o . . t +
latt =
atter satisfies the usual unitarity, Sphyssphys Sphyss

without the contributions from unphysical negative norms.

These conditions (0)=(ii) are shown as follows to be satis-

fied in our formalism with the Lagrangian density

L= £ (a,9)-250"8%+aB"8%/2-140% (D )®, (2.1a)
L (A,P) = —F FOWV/ML (P8 0, (2.1b)
(Duc)a = Buca+gfgcAﬁcc,

= _sop@ma
& p = (3, -1gA T )P

a

Here, Au is the Yang-Mills field with the group index 'a’

referring to the gauge group G with the structure constant

a a
fbc’ Fuv
Jgu are the covariant derivatives associated respectively to the

is the corresponding curvature tensor, and Du and

adjoint representation of G and the representation to which
the mattér field ¥ belongs. Terms containing Ba in (2.1la)
are the gauge fixing term necessary for the canonical quantiza-
tion and c¢? and c° are Faddeev-Popov (FP) ghosts whose role
in retaining the gauge invariance of the physical contents of

the quantum theory has been clarified by Faddeev and Popov.
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By the hermiticity assignment of FP ghosts, ct=c, ot = c,
the condition (0) is satisfied: gﬁ'==£” HJr = H. Since the
system (2.1) is invariant under the BRS transformation3 given by

SAY = (Duc)a, §P= igc?T?y, (2.2a)

sc? = —gfg cbcc/2, (2.2Db)

= c

sc® = 1%, sB® = 0, (2.2¢)
we have the corresponding conserved Noether charge QB

Q = |a3x(BR(D,c)B-B2ct+igrd T2cPcC/2) = of (2.3)

B ~ 0 be B? :
satisfying the remarkable nilpotency property
2 _ - -
which is a consequence of the same property of §: §2 = 0.
Using this BRS charge QB,wesznﬁ;asthe subsidiary condition
QB’phys> =0, (2.5)

by which the condition (i) is automatically satisfied owing to
the conservation of QB. Although the condition (2.5) looks
quite different from the Gupta-Bleuler condition B(+)(x)|phys>

= 0 in QED, it is really shown to reproduce the latter one in



the Abellan cases owing to their speciality, which means that
(2.5) is a natural and nontrivial extension of the Gupta-Bleuler
condition to non-Abelian cases. In order to verify the condition
(ii), we consider the algebra consisting of the BRS charge Qp

and the FP ghost charge Qc defined by

-QC = ijd3x[5agoca+gf%CEaAgccj = QZ, (2.6)
[iQC’c] = C, [iQC,EJ = _'E., (2°7)

satisfying the relations

[1Q,,95] = @, | (2.8)

1Q | ¥,N> = N|¥,N>; <¥ M|¥¥ N> a § (NEZ). (2.9)
c M,-N

Since all the possible representation55’2’6 of this algebra with

the properties (2.3), (2.4), (2.6), (2.8) and (2.9) are only

BRS-singlets characterized by QB]a> = Qc|a> = 0 -without any

| ¥> satisfying QB|*> = |a> and gquartets consisting of pairs
of BRS-doublets {|N>,QB|N> = |N+i>; |-(N+1)>,QB|-(N+1)> = |-N>}

with <N|N'> = GN _N'o We obtain the following theorem on the
3

assumptibn of asymptotic completeness:

Theorem 22 pP™) = {Qg, FRMy o> 1,

P(n)

where is the projector onto "n-unphysical-particle

sector" containing n-members of quartets besides arbitrary



number of BRS-singlet particles.

By this theorem, the condition (ii) is verified,

QB|f> = 0 = <f|f> = <f| } P(n)|f> = <flP(O)+{QB,aR}|f>
n>0

<P(O)f|P(O)f> > 0,

on the inevitable assumption that all the BRS-singlet-particles

have positive norms. Note that from Thm. 2 we can easily show

P ey o= % a e

= QBU= U (2.10)
niO

hys phys 0?2

‘which asserts that "unphysical" particles belonging to quartets

appear in 'up but only in zero-norm combinations and that

hys
they are invisible physically. By this quartet mechanism, any

member of quartets is "confined" into unphysical world, and; in
the visible physical world, there remain BRS-singlets only.

In view of the quartet mechanism, quarks and gluons will
be confined if they have asymptotic l-particle states belonging
to some quartets, namely if [iQB,q] = igxacaq/Q and [iQB’Au]
= Duc have discrete poles due to the bound states in channels
of c¢-q and AM—CS.

The application of this formalism to Einstein gravity7’8’9,

7 10

vierbien formalism', and supergravity have been extensively
and successfully made.

It is interesting to note here that the physical Hilbert

space thys = vphys7vb can be written as Ker QB/Im QB



because of.(2.5) and (2.10), which might suggest some relevance
of cohomology in view of the nilpotency (2.4). The nilpotency

of § and the resemblance of (2.2b) to the Maurer-Cartan equa-
tion also tempt us to interpret the BRS transformation as the
coboundary operation in the cohomology of Lie algebra (of the in-
finite - dimensional group of local gauge transformations). It
is, however, difficult to find the proper places for ¢ and B
to fall into. The "cohomology group" of - § has relevance to

the notion of observables discussed in the next section.



3. OBSERVABLES AND "MAXWELL" EQUATION

— Confinement vs. superselection rule —

In order to assure the consistency of the probabilistic
interpretations not only in the scattering theoretical aspects
so far discussed but also in the measurements of a physical
quantity A, we should at least have the condition

<¢|A|x> = <x|A|e> = 0 for |<1>>e7fphy Ix>€ Vy, (3.1)

S,
namely, no effect of zero-norms |x> E'Ub should be observed
through measurement of A. We call any operator A satisfying
(3.1) an observable. Although this requirement seems quite
modest, it leads really in this formalism to a clear result that
an observable should essentially be BRS or gauge invariant:

2

Theorem 311’ The condition (3.1) is equivalent to

_ T _
or AV V- and AT’U" (3.3)
phys c phys phys c Vphys :

~

and defines an operator A in thys by
.~ . o
Al®> = Ale> for |o> € ”z)phys, |®>evphys/ 0 (3.4)

Combining this theorem with the Reeh-Schlieder theorem 12,11,2
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W
valid in a relativistic QRET which asserts U= F()|o0>
(w: weak closure) for a polynomial algebra F(&) of local
operators in any finite space-time region (9, we obtain

y11,2

Theorem The following three conditions for a local

operator ¢ € F(®) are all equivalent:

(1) ¢ is a local observable,

0, (3.5)
0. (3.6)

(ii) [Qg,]
(i) Qo] o0>

Now at this stage, we need dynamical information brought

by the "Maxwell" equation of the Yang-Mills fieldllz

Una a _ ~-\a
8TF , * &l = {Qg,(D,c)7}, (3.7)
where Ji is the conserved Noether current of the gauge
transformation of the first kind, containing the FP ghost
contributions also. Combining this and Thm.4 with locality,

we can prove the color singletness of local observables and of

local physical states:

2

Theorem 511’ [éa,ﬁ] = 0 for local observable A,

éa|®>= 0 for localphysical state |&>

(Jo> € Uy N F(G)[05),

Theorem

6112

-~

where Q% is an unbroken global "color" charge. So, the color

confinement, éathys = 0, will have been achieved, for example,

- 10 -
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if the Reeh-Schlieder property holds restricted to physical
R W
ohys 1 FCO 0" = Uy o

hold automatically in contrast to the total space 7», as can be

subspace: U This condition does not

seen from the example of QED where charge superselection rule

holds allowing such charged states as electrons. There are,
however, some indications in favor of color confinement that
charge superselection rule of QED is due to the speciality of

Abelian gauge theory. Note that confinement of the global color

charge leads without any gap to quark confinement, because the

"behind-the-moon" argument usually placed against a confinement
is not applicable to this casell’z.

Closer analysis of the "Maxwell" equation in the next
section reveals the crucial role of massless spectra in

determining the fate of the color degree of freedom.

4, "MAXWELL" EQUATION AND GOLDSTONE THEOREM

— Confinement vs. Higgs phenomenon -—

Rewriting the "Maxwell" equation (3.7) in the form

voa

pv

a _ -.a
gI, = 3 F ., + {QB’(DUC) },

we notice that the color current gJi consists of two conserved

currents, SvFiv and {QB,(DUE)a}. Since the color charge

gQ~ = IdBXng is almost equal to the anticommutator, N =
deX{QB,(DOE)a}, of Qg vanishing in the physical world, up to

a

the term G° = [d3xalFOi

which vanishes on the local states

- 11 -
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owing to locality, the "Maxwell" equation can be naturally

viewed to tend to confine its own charge. To make clear the

13

meaning of "almost", we refer to the Goldstone theorem 7,

according to which the charge 6% vanishes unless avFiv

contains discrete massless spectrum. The same theorem, however,
tells us that the charge N? is almost always broken
spontaneously owing to massless pole appearing in F.T;<OITAUB|O>
= iF.T.<O]TDucElO> = —pu/p2. In this case, "almost" means,
"unless det(L+u) # 0", with the parameter u defined as the

a ,b-c 2

pole residue of beAuc at p~ = 0.

Gathering together these sets of dinformation, we obtain

Theorem 72 On the assumption det (1l+u) # 0, the charge
a

Q

is broken spontaneously iff BvFﬁv has no discrete

massless spectrum.

Corollary2 If a gauge boson becomes massive, then the
charge in the corresponding channel is broken spontaneously.
(Converse Higgs theorem).

So, if we do not want the color symmetry to be broken,

there remain only two possibilities:

a) BvFiV contains a massless pole (det(L+u) # 0),

or b) "u = -1.

While gluons will not be confined in the case a), the seemingly
rare case b) asserts the color confinement straightforwardly:
u= -1 =>¢? = 0, g = N? %>éa = 0 in thys' ‘There may be

several hurdles on the way to prove u = -1, but once it is done,

_12_
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the quark confinement will have been achieved with whole

consistency in this formalism of relativistic quantum theory

of gauge fields.

=

vl =W
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