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Recent development of QST
L.D. Faddeev

Vice-director of Steklov
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Quantum spectral transform (QST) method was introduced
as a natural quantization of the famous inverse scattering
transform (IST) introduced in [1] . The following consider-
ations stimulated its derivation

1. Hamiltonian formulation of IST, derived in [2].

2. Group theoretical interpretation, found in [3], [4].

3. Certain similarity between trace formulae, introduced
to IST in [2] and trasfer -matrix method in the statistical

mechanics lattice models given in [5].

Now the QST seems to be more natural than IST which can
be considered as a sultable quasi-classical 1limit. The
literature on QST is rapidly growing. The surveys [6], [7]
contain main ideas and history of the method. More recent
developements are described in [8], [9], where many references

can be found.

The main results of QST can be formulated as follows:
1. Algebraization of the Bethe Ansats method for finding
the eigenvalues and eigenvectors of the Hamiltonian in gquestion.
2. Selecting the ground étate as a Dirac sea of the negative
energy states and finding the particle-like excitations. For
relativistic models it leads to describing the mass spectrum

which can be quite different from that of the perturbation theory.
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3. Calculation of the phase-shifts for scattering of these

excitations.

Unfortunately until now QST can be applied only to field-

theoretic models in 1+1 dimensional space-time.

In these lectures I am going to relate some results in
QST obtained in Leningrad last year. They belong to the point
1 above. But first I shall briefly formulate the basic ideas

of the method.

The quantum mechanical dynamical system on a one dimen-
sional periodic lattice of finite length N 1is described in

a Hilbert space f.j of the form

BT Redh

Here '6n is a one site Hilbert space where the field operators
are represented. These operators for different sites are
supposed to commute.

Examples

1. Heisenberg model for spin 1/2 (XXX - model).

The space ﬁn is m2 and field operators are three spin

operators Sz , o =1,2, 3

® I (1)

o . . . R
where o are ordinary Pauli matrices and nontrivial factor
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stands on the n~th place. The operators Sg satisfy the

commutation relations

a B - s ~OBY QY
[Sm > Sy 1 = 1c¢ Sn %mn

The Hamiltonian 1s given by

_ a L0 1
H = g (Sn Sp+1 5 )

s s o _ O
where it is supposed that SN+l = S1

2. Nonlinear Schroedinger (NS) model.

The space %n is isomorphic to ;f2(IE;) and the field

operators wé, wn represent the Helsenberg algebra

[wm’ ng = Gmn °

The exact Hamiltonlan is not defined explicitly and will be

discussed later. It must turn to the classical continuous

Hamiltonian
L 2
Heo = [ (30*¥39 + w(y*y)°) dx (2)
NS 0
. .. _ a=1/2 , _ -
in the limit A -+ 0, y(x) = A Y K=nA, L = NA

n 3

when order of factors is not paid attention to. There A

is lattice distance.
3. Sine - Gordon (SG) model.

The space -ﬁn is the same as in the previous example

but the field operators u v represent Weyl algebra with

n’> 'n

parametre vy
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The Hamiltonian will be commented upon later.

The corresponding classical continuous Hamiltonian is given by
2
Hyg = [ [ 2 + (30)%) + T (1 - cosBe)] dx (3)
g2

where 82 = 8y and m 1is a mass parameter. The relation
between the Weyl operators and the fields m(x), ¢(x) 1is
‘approximately as follows ; 1let

n A n

7= [ w(x) dx b = 1 [ ¢(x)ax
n A An

where An is interval of the length A adjacent to the lattice

point n, then

u_ = exp {iBﬂn/u }

n v, = exp {i6¢n/2} .

’

4, XYZ model

The algebra is the same as 1in example 1, but the

Hamiltonian is nonisotropic

_ a L0
H = E Ja Sn Sn+l

.

It redﬁces to XXX model when the parametres Ja are equal.
In case when two of them (say Jl‘ and J2) are equal 1t is

called XX7Z model.

The list of examples can be continued and references

can be found in the literature cited above.

ST
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The main object of QST is a so called Ln(x) operator
which is a matrix, acting in an auxiliary space V with
matrix elements being operators in ﬁn and depending on a
complex parametre A . The main property of Ln(x) consists
in the family of commutation relations which can be written

in the form
R(A-u) (L (A) @ L (w)) = ((L (w) @ L (X)) RO-u) . (&)

Here the tensor product is defined in V in ordinary algebaric
way but the order of noncommuting matrix elements 1s to be
taken into account. The matrix R(A) acting in V & V does

not depend on field operators and is the same for all n.

For the examples mentioned above the space V 1is two-

dimensional, V = m2 . Corresponding Lrl are given as follows
xex < r+1sd, st ) -
n is7 A - 183
st = si - 1si ;  sD = st o+ 182
(NS _ ( 1+ A - %? bptn @ Vg (l‘%i vE )
where u2 = kA
.56 u;l/2 £(v,) u;l/2 %? (e>‘v;1:L - e-kvn )
n =
%@ (e_)‘vgl - ekvn) ui/2 £(v,) ui/z
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2.2
where f(v) = (1 + mg%‘ (V2 + V_z))l/2 5
3 1 . ‘ 2
wA(A) + w (X)) S 5 wo(A) ST - diw,(A) S
LXYZ ) 0 3 n 1 n 2 n
n
1 . 2 3
wl(k) Sn + 1w2(x) Sn ; wo(k) - w3(k) S

where the coefficiants wa(x) are given in terms of elliptic

functions of modulus k

sn (A+n , k)

oA = et 3 w0 =1
(6)
dn (A+n , k) . - _ cn(A+n , k)
() dn(n,k) > W3(>‘) cn(n,k) .
The matrices Ln(k) above contain correspondingly

0, 1, 2, and 3 parametres besides A.

The R-matricies can be written in the form

o
o
Q

(@)

R = (7)

o
o

lon
o

XXX case

d=0 a=1 3 b= —%T H c = X%T

N S case

d=0 3 a =1 ; b = X%%E 5 C = X%TE

S G case

sn0 s s s s B e e

-6 -
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XYZ case
a = WO + w3 b = WO - W3

(8)
c = WO - w2 d = WO + w2

Several comments are in order.

1. The fundamental relation (4) in generic case is consistenf
if R-matrix satisfies some condition. To write it down let

us introduce the matrices Re I and I # R acting in
VeVeV, where I is a unit matrix in V. The condition
called Yang - Baxter relation looks as follows

(R(x-u) @ I) (I @ R(A-0))(R(p-0) ® I) = (9)
9

= (I ® R(p=0))(R(X=0) @ I) (I @ R(x=u)).

2. In XYZ case the auxiliary space =~ and local quantum space
ﬁn coincide and R matrix practically coincides with Ln R
S0 that the relations (4) and (9) are identical. Such models

and corresponding L-operators are called fundamental.

3. Operator LiXX is a degenerate case of LiYZ ~in an

appropriate limit.

4., The R—matrices‘ of XXX and NS models coincide after trivial

renormalization A > A/.

5. Consider NS example and let us introduce a new Ln-operator
~  _2i
Ln = -3 03 Ln . (10)

It satisfies the fundamental relation (4) because corresponding

R - matrix commutes with 03 ® 03 . Now En can be written in

- 7 -
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the form
, . <3 .o ()
N }\/K + 1 Sn 1 Sl’l
L =
n
. . @3
i Sn AN - 1 Sn
analogous to LiXX with operator Sg given by
O B U S VI SN CO R
n n T Yy ¥y s n - n
53—_-_2_3(1_9‘311,*“)) (11)
n o 2 n n

which satisfy the commutation relations of 0(3) or 0(2,1)
group depending on the sign of k . Moreover the corresponding

representation is irreducible, the Casimir operator

a

0 being equal to 2(2+1), & = «2/0. We see

K=1:5s%s
n

that after the change Ln - in the NS model is nothing

but XXX model for the noninteger value of spin. One must

comment that Sg realize the representation of the Lie algebra

which 1s not integrable to that of the group.

6. In the XXX and NS examples there exists a local vacuum ,

namely a state w, € ﬁn such that Ln(k) becomes triangular
when applied to 1it. In XXX case W, is given by vector
1
wn— (O)

and for NS case W, is a state annihilated by the operator

v

n
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For SG model local vacuum exists for the product of two
consecutive Ln ; for matrix Ln+an it lies in 6n+1 ® én

and 1is given by function

2,2

(1 - EI%— cos(% inv v

-1/2 1
n n+l)) 8( i

v
n -
an’ /vn+ + v T )

1

in the representation where operators v, are diagonal ,

In all these cases we have the property

e = (57 ) o

where o(A) and &()) are functions independent of the field
operators. For SG case this formula is true for the product
Ln+an . The values of a(A) and &(X) (local vacuum eigenvalues)

are as follows

XXX case
a(x) = X + 1/2 S(x) = X - 1i/2
NS case
a(r) =1+ 28 s(n) =1 - 128
SG case
m2A2
a(r) =1 + —3g— ch(2x - 1iy) 5 §(A) =a(=2)

Once more we see that and Oyyy are practically the same.

NS

We are ready now to explain the formalism of QST.
First of all the monodromy matrix T(A) is defined as agj3

ordered product of the Ln - metrices over the lattice

.
T(A) = 1 Ln(k) .
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Its matrix elements will be denoted as A, B, C, D

IO = (Am BOO )
C(r) D(X)

We do not introduce explicitly the index N on T Dbecause

N 1is fixed throughout all our lectures.
The main formula (4) 1leads to the commutation relation
R(A=p) (T(X) & T(u))= (T(w) e T(X))R(A-u) (12)
and in case when the local vacuum exists we have

(m,)N % )
™R = 0 6(MN Q (13)

where Q=10 W, and N 1is to be changed to N/2 in

SG case. In other words § 1is an eigenvector both for A(X)

and D())
ane =oM¥ e 5 pove = sl (1)
and is annihilated by C(A)
ciyae =0

We shall write explicitly some of the commutation relations

contained in (12)
[A(A) + D(A) > A(w) +DW] = 0 3

[B(A) , B(w1l= 0 3

RO B(r) =BG A grmipy - BOU AGw) 2

- 10 -



63

D(x) B(u) = B(u) D(A) EUE_LJ) - BOY DOW) gi(tﬁg g

B(A) C(w) - 6(w) BV = 2 (a(w) DOV - A DG )

From these relations and (14) it follows that for a given

set {A} = (Al;---kn) the vector
v({r}) = B(Xl) <. B(KH)Q (15)

is an eigenvector of A(A) + D(X) = trT(A) with the eigenvalue

_ N 1 N 1
ACx, {A}) = a(X) lg m + 8(A) g m
if (Al,-~-,kn) satisfy the set of equations
a(x) \N (A 52y)
(o) - sy (16)
J L#J 2273 _

( N> N/2 in SG case)

The last equation is equivalent to the natural requirement

that A(A,{X}) is an entire function of .

Thus the described formalism gives the system of eigen-~
vectors of an infinite set of commuting operators for which
trT(A) 1is a generating function. The hamiltonians of the model
is contained in this set. Indeed in the example of XXX model

the hamiltonian is given by the formula

4

Ho= g5 an(A0) + D) )|, 2 40

which reminds the trace formulae mentioned in the introduction.
For other models such simple formula is not true. Recent ideas

on this subject will be discussed below.

- 11 -
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The limit N -»> is most interesting in physical appli-
cations as it reveals the structure of ground state and
excitations. Many results on this limit can be found invthe
original papers, see for example [10], [11]. We shall not
treat this subject in fthese lectures. Instead we shall con-

centrate on several formal aspects of QST which have got a

new insight recently, namely
1. Normalization of the state Y({A}).
2. The local hamiltonian for the nonfundamental models.

3. The general structure of the operator matrix Ln(k).

Normalization problem was treated on the example of
XXZ model by Gaudin et al in [12]. Recently Korepin has got

a complete and general solution [13]. We shall make a comment

on his solution.
Korepin considers the matrix element
<o | Clr)-- Ca) B(A) -+ BOA)] Q>

which in most cases 1s nothing but normalization factor due
to the condition of the type C(A)~VvB(A)¥ . Apart from a
trivial factor this matrix element is shown to be proportional

to the determinant of a matrix M, where

There wi({A}) are essentially the logarithms of the equations

(16)

(o) .’ a(Xi) c(xi-xj)
Y, = Ln - 39
i amij " n c(xj-xii
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It is easy to see that matrix M 1is symmetric, so that there

exists a function &({A}) such that

b = 20 W o 3%
; ik T TN oA,

Moreover this function is invariant with respect to the permu-

l’-.o >\n

tation of A
I beleive that the function &®({A}) will be very useful

in the future understanding of the mathematical structure of

QST. Indeed the equations

09
A,
i

= 0 (mod 27i) (17)
equivalent to (16) and the fact that the normalization factor

is proportional to the Hessian of ¢ look very much like
quasiclassical formulae giving exact quantum result. Alternatively
one can imagine that (17) is some kind of the integervaluedness
condition inherent in the geometric quantization a 13 Kirillov-
Kostant. All this must be considered as an indication that QST

is connected with the representation theory of an infinite

dimensional group.

Now I turn to the problem of the local hamiltonians. One
natural requirement for such a hamiltonian is the additivity
of its eigenvalues ; more exactly the eigenvalues of the vector

Y({r})(15) 4is to have the form

EO + :ZLh(Ai)

where EO and h()) are vacuum and quasiparticle energies,

correspondingly. This property i1s satisfied by the operators

given as follows.

- 13 -
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He = (&) oo 100, (18)

where n 1is a zero of the local vacuum eigenvalue §&§(A)

§(n) = 0 >
Ey and h(\) being given by
_ d yk ) _rdnkK 1 ,
Eq = N(a) Ln a(A)IAzn 5 h (W) = (a;) n W] |u=n

Indeed in the vicinity of n the eigenvalue A(A,{A}) is

multiplicative thereby leading to the given formulae.

The hamiltonilans Hk are local in the case of fundamental
models. However for nonfundamental models such as NS and SG
this is not true. With some effort Korepin and Izergin have
modified the approach given above and obtained reasonably
quasilocal hamiltonians approaching the expressions (2) and (3)

in the continuous limit. (see [141]). However their results

are not completely satisfactory.

The alternative way to solve the problem is based on the
proper interpretation of the results of Kullish and Sklyanin
[9] on the XXX model for higher spin. The Lrl operator of the
form (5) satisfy the fundamental relation (ﬁ) whenever the spin
operators, S+ , ST and 83 give the representation of the
rotation group. The R-matrix is the same as in spin 1/2

case 3 only the local vacuum eigenvalues change
o = A+ 1S , 6 = A-18

where S 1is full spin. However this Ln—operator which we
s
denote Ln is not fundamental and formula (18) does not lead

to the local hamiltonians.
- 14 -
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Kulish and Sklyanin have found a remedy for this. They
constructed the Ln operator with auxiliary space having the

dimension 2SS + 1 . This operator will be denoted

S,S
n A ]

L It is fundamental so that (18) can be used to

produce the local hamiltonians. But to diagonalize them we
can use old operator Li . Indeed, there exists an R-matrix such

that the following relation holds

S,S

R(Ln

(M) e LS (W) R7H = (T e LY ()12 (0 e 1)

(observe slight change of notations due to the difference of
two auxiliary spaces). The last formula shows in particular
fhat the traces of TS’S(X) and TS(X) commute so that they

have mutual eigenvectors.

In this way the family of local hamiltonians for any spin

appears. For S =1 the simplest of them looks as follows
H=3 X~ %X, X = g%®

n n"n+l ¢

For any spin analogous H has the form
H = g PS(Xn) (19)
where PS is some polynom of order 28S.

The group - theoretical interpretation of these results
and explicit formula for PS(X) is given in [15]. The N » «

limit was recently investigated by Takhtajan [16].

This obervation together with the comment above on the
connection of NS and XXX modle makes us beleive that to

get the local hamiltonian for NS case one 1s to continue

- 15 -
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formula (19) to the S = -1/ . To do 1t we must intrcduce
the infinite dimensional auxiliary space V and construct
fthe corresponding fundamental operator Ln .  The 03 factor

in (10) can be dropped out after the change of ¢ operators

v, - -1y

n

which 1s easily seen from the relation

oq L () oy = L (-v) .

n

It is instructive to see the form of the operator Xn for

spin operators given by (11). The simple calculation shows
that Xn up to a factor and a constant is given by the
expression

% ¥ K * *
<L£Jn+l * wn+1> (wn * q)n) i (2 wn+1 ¥n 1pn+l li)n *
% % * *
* Lpn lpn wn+l by * Y+l Yne1 ¥ner ¥n )

which 1s a simple finite difference opproximation for the energy

density in (2)

These quite satisfactory results make me suspect that
the model for which QST can be applled are assoclated with
some algebraic structure represented in the local quantum space
%; . For XXX and NS models this is a representation of the
Lie aléebra of the 0(3) group. More general algebraic structure
was uncovered recently by Sklyanin, who made the following

observation.

Let us consider operator Ln of the form

- 16 -
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_ 0 3 o o
Ln = wo(k) Sn ® 1 + E w _(\) Sn®<5

when I and o% are matricies in E2 , coefficients TNO(K),

wa(x) are given in (6) and Sg , Sg some operators represented

in 4 . This L reduces to LA'2 in case <% = ¢ s
n n n n
Sg = I and Sz given in (1). Let us further suppose that

this Ln satisfies the fundamental relation (4) with the Baxter

R-matrix (7), (8) . Then the following commutation relations
are to be satisfied by sg , sg
[s*s%1 =-143, (S,8,+S. 8, 6
n, n By B Ty Yy B mn
[s® sby =

i (SO SY + SY SO) amn .

m, n

There oaBy 1s an even permutation of 123 and J are given

By
by

and are independent of X due to the special form of WO(A),

WQ(K)

We see that the problem of finding the general Ln is
reduced to the description of possible representations of these
commutation relations. In XYZ case they are satisfied due
to the anticommutativity of o-matrices. It is clear that
to generalize XYZ model to "higher spin" we must consider
nontrivial operator Sg . In particular the SG model is

such a generalization of the XXZ model.

To get the local hamiltonians the theory of tensor multi-

plications of the representations of operators Si is to be develcped

- 17 -
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This problem is under investigation now.

At this point my lectures are finished. The outstanding
unsolved problems are the following
1. Expression for the Green functions.

2. Finding the Ln operator for the non-linear o-model.

The last results give us optimism with respect to the
second problem ; we must think about the E(3) structure
analogous to the 0(3) structure of the XXX model. For the
first problem the interpretation of QST in terms of representation

of infinite dimensional group will be very useful.

- 18 =
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