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In this paper we consider graphs which may have loops and multiple edges.
We denote by V(G) and E(CG) the set of vertices and the set of edges of a
graph G, respectively. The degree of é vertex z of G is denote by do(z). Let
S.T be disjoint subsets of V(G). e (S,T) is the number of edges which join
vertices of S and 7T, and eG(S) is the number of edges which join vertices of S.
The other notations which are not explained explicitly are due to [3].

Let f be an integer-valued function defined on V(G). A spanning sub-
graph A of C is called an f-factor of G if dy(z)=f(z) for any z€ V(G). If f
is the constant function taking the value k, the f-factor is said to be a k-factor
or a k-regular-factor.

In this paper we shall give a sufficient condition for the existence of regular

factors of regular graphs. This condition are related to the edge-connectivity of
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graphs.v Such a research goes back to Petersen [4]. Various results are
obtained by Petersen, Gallai, Plesnik et al.,, which are listed below. The main
theorem in this paper is an extension of Proposition E (Plesnik [6]).
Proposition A. (Petersen [4]) If G s 2k -regular (k=1), G has an l-factor
Jor any even tndeger | such that 0= [=2k. | O
Proposition B. (Petersen [4]) If G is 3-regular and 2-edge-connected, G has
a 2-factor and a 1-factor. [
Proposition C. (Berge [1],Plesnik [5]) If G 1is r-regular, (r—1)-edge-
connected and |G| is even, then G has a 1-factor and an (7—1)-factor. [J
Proposition D. (Gallai [2],Plesnik [6]) Let G Mbe a 2k -reqular (k=1) and
a -edge-connected graph. Then G has an [-factor for any odd integer [ sﬁtisﬁ/mg
a—1 |

—I—Zké l=
a a

2k. O

Proposition E. (Plesnik [6]) Let G be a (Rk+1)-regular (k=1) and a-
edge-connected graph. Then ¢ has an l-factor for any even inleger | satisfying.

o=i1= 2 2k+1). O

Remark that the edge-connectivity of an even-fegular graph is even.
Hence when 7 is even, Proposition C is a special case of Proposition D. But if
T is odd, Proposition C (and Proposition B) cannot be deduced from Proposi-

tion E.

Tutte obtained a criterion for the existence of an f-factor. We use it to

obtain our theorems.
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Lemma 1. (Tutte [7,8,9]) A graph G has an f -factor if and only if

A(S.T)+ L Hf(H)—de_s(i)}= T f(s) (1)
te T s€S

for any disjoint subsets S, T of V(G), where h(S,T) is the number of componenis

C of G=-(S U T) such that

Y fle)+e(V(C),T)=1 (mod2). O
ceV(C)

Here we use (1) in the following form.

h(S.T)+ec(S.T)= X f(s)+ X de(t)- X F(1). (1)

ses§ teT te T

First we improve the evaluation in Proposition E.

Theorem 2. Let G be a (2k+1)-reqular (k=1 ) and a-edge-connected graph.

If a 15 even, G has an [-faclor for any even 1inleger [ salisfying

o=i1= -2 (2k+1).
a+1

To prove theorem 2, we need some notations and lemmas.

Let G be a (2k+1)-regular graph. For S,TCV(G) (SN T=¢) and an

integer {, define 6(S,T;!) by:
§(S.T:0)=1]S|+(2k=1+1)|T|~A(S.T)=eg(S,T).

Obviously G has an (-factor if and only if §(S,T;()=0 for any S.TC V(G)
such that SN T=¢. Let H(S,T) be the set of components C of G—=(SyU T)
such that e (V(C).T)=1 (mod 2). Suppose [ be an even integer. Then
h(S,T)=|H(S.T)|. Let V, be a set of vertices of G—(S U T) which do not
belong to components of H(S,T). Define m;,m,n;,n, and N by

my=e-(V,.S), 7ﬁ2=ec(3), n=ez(VyT), ny,=ec(T) and N=e (S.T).
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Remark that n, is even. We shall write H(S,T)={C,, . . ., C3 (r=h(S.T))

and set s;=e(V(C;).S) and t,=e (V(C,).T).
Lemma 3.

(Rk+1)8(S, T;1)=tm +2lmy+ (2k=1+1)n, +2(2k~1+1)n,
T
+ 3 (Is+(2k—1+1) = (2k+1)).
i=1 ’

Proof. Considering the sum of degrees of the vertices in §,

,
(Rk+1)|S|= Y s;+m +2my+ N.

i=1

Similarly,

R+ 1)IT|=2 {;+n+2n,+ N.

i=1

From these two equations and the definition of 6(S,7T;l), we obtain Lemma 3.

O
Proof of Theorem 2.
I 0=1l= Zl (2k+1), tm+2Imy+(2k—1+1)n +2(2k~1+1)n,=0. In case
a

SU T=¢, it is obvious that (2k+1)6(S,7;{)=0. We shall show that
Y(s;, 6)=0 if SU T=¢, where ¥(s;, t)=Ils;+(2k=1+1)t,—(2k+1). From the

assumptions, we obtain the following.

5,=0. | | , ~ (2)

t,=1 (mod 2), especially {,=1. (3)
s,+E2a - » (4)

If s; 21, ¥(s;,¢,)= L+ (2k—1+1)—(2k+1)=0, since t,=1. Hence we may confine

ourselves to the case s;=0. Assume (2k—{+1)t,—(Rk+1)<O0, then
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+
i< —?——I-C———i——é a+1,
2k—1+1

a

T (2k+1). Hence t,=a. But since ¢ is odd and a is even,
a

since 0=1(=

tiS a—1. This contradicts (4). Therefore we obtain 46(S, T:l)%O and G has an

{-factor.
0
Next we aésure that the evaluation of theorem 2 is the best.

Theorem 4. For any inleger £k and even inleger a salisfying 0=a=2k+1,

there ezists a (2k+1)-regular and a-edge-connected graph which does not have an
{-factor for any even inleger [ salisfying 1> ——3—1—(21\:-# 1).
, a
Proof. We shall construct a graph G(a,k) which has the required pro-

perty. G(a,k) has subgraphs H,(1=1=<2k+1) and Jj(léjé a+1). First we

define H; and J]. and then construct G(a,k).
(i) H, (1Sis2k+1).

H, has (2k+3) vertices, say

Let F{i be a complete graph with the vertex set V() and P, be a path defined

by Pi=z; |z, - :i:i’“z. We define £(H,) as follows.
E(Hi)zE(ﬁi)—E(Pi)—Ii,a+3xi,a+4
T a+5%,e+6” 0 T2k Tize+2 T Ti2k+3Ti1

H; has the following properties.

2k =7 a+l
(% )=laks1  jzarz
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H, is 2k-edge-connected.
(ii) Jj(léjé a+1)

J; Is a complete bipartite graph with partite sets

Obviously d,J>(yj )=Rk, dd,‘(z]. ,)=2k+1 and J; is 2k-edge-connected.
7 ' bl '

(iii) Joining z; ;in V(H,) with Y. in Y (1=1=R2k+1,1=j=a+1), we obtain

G(a,k). Obviously G(a.k) is (Rk+1)-regular and minfa+1,2k{-edge-

connected. Hence G is a-edge-connected (since 0=a=2k+! and a is ev‘en).

a+1l a+1 a

Let S=U Zj, T=y Y].. We shall show &(S,T;0)<0 if [> " (2k+1)
. . a+
j=1 =1 ‘

and [ is even. In this case,

So by Lemma 9, 6(S,T;!)=(Rk—1+1){a+1)-(2k+1). It is easy to show that
(2k—(+1)(a+1)—(2k+1)<0 if [> -;:C_LT(Zlc-i-l). Therefore G does not have
an [-factor. O

If a is odd, the bound of Proposition E is the best.

Theorem 5. For any inleger &k and odd wieger a salisfying l=a=2k+1,

there exists a (2k+1)-regular and a-edge-connected graph which does not have an
L-factor for any even integer | salisfying (> -(—1-1(21c +1).
a

a—1

(2k+1)=2k and the theorem follows.

Proof. If a=2k+1, then (>
. a

We consider the case a=2k-1. Since a is odd, CG(a—1,k), defined in the
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proof of theorem 9, is 2k-regular, a-ed»ge’-cc‘)nnected e_md doe; not hgve gn i-
factor for any even integer ( satisfying > %(2/c+ 1‘). |

When the regularity of graphs is even and the edge_-c‘onnecti\}i'ty is odd,
Proposition D gives the best bound:

“Theorem 6. For any ndeger k and any even inleger a ’s'atiéfying 1= aé?k,
thére exists a 2k -reqular and a-edge-connected graph G with even number of ver-
~ tices which does not have an L‘factq.r fqr a,ng‘/kodd inleger l such that l< —321;:‘ or

a—1

1> 2k .

a

Proof. If a 2k-regular graph & has an [-factor A for some [ such that

-1 . 1 .
(> 2 2k, G—H is a (Rk—1)(< —R2k)-factor of ¢G. Hence it suffices to show
a a : '
that some graph G does not have an {-factor for any ( such that i< L k.
a -

Clearly the result follows if a=2k. If a=<2k—2, we construct a graph G'(a.k)
as follows. G'(a.k) has H(a=1is Zk)‘and J’j('lé J=a) as subg'ra'pvhsf ‘
(i) H, (1=i=2k)
V(IH ) ={z, . . . ., xi,21c+l;' Let H' be a coméleée gra.ph ;vith fthe‘vertex
set V(H')). Then we define E(H",) by |
E(H'i):E(ﬁ,i)_ri,lxi,Z-II,SIIA_ T T e-1% e
(it) /(1= j=a) |

J'. is a complete bipartite graph with partite sets Y, =§yj’1 ..... yj,2k§ and
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.

(iii) Combining z; ; of V(H,;) with y,; of ¥V, (1=i=2k.1=j= a), we obtain
G'(a,k). Clearly |G| is even and it is easy to show that G is 2k-regular and

a-edge-connected. Set

8 (S.T:1)=LS|+(Rk=U)|T|-h(S.T)—e,(S.T)

for S, TCV(G) (SN T=¢). If §'(S.T;1)<0 for some disjoint subsets S, T of

a a
V(G), then G does not have an (-factor. If we set S=UJ Y’j and T=Uy Z’j,
j=1 j=1

we obtain 6(S,T;l)=al—2k in the same way as in the proof of theorem 9, and

al—2k<0 if i< 1—Zk:. Hence G does not have an [-factor for any even integer
a

a—1 2k. [
a

{ such that (< }—2Ic or [>
a

From Propositions A,D,E, Theorems 2.4,‘5,6, the best possible bounds of
regularily of regular factors in regular graphs are obtained. In these theorems,
only the regularity and edge-connectivity of graphs are given. If more proper-
ties about graphs are assumed, better bounds can be obtained. For example,
graphs which are not 2-edge-connected can have 1-factors and 2-factors.

Proposition F. (Berge [1]) If G is 3~re’gula‘r and all of bridges of G are on
the same elementary path, then G has a 1 -factor and 2 -factor.

We extend the above theorem.

Theorem 7. ‘Let C be a (2k+ 1)-regular and (a—1)-edge-connected graph
(a=1). Suppose there are disjoint subsets S,, . . . , S, of V(G) satisfying:

V(G)=U S,

1=1

< §;> 15 a—edge— connected,



ec(S;. S )=a-1 (1=i=71-1),
eG(Si'Sj)zO if |i—j|>1.

If a 1is even, then G has an [-factor for any even 1nleger [ satisfying

0= —9T(72k+1) (¢f Theorem 2).
a-+

Proof.

Suppose & does not have an [-factor for some even integer .l such that

a
a+1l

0=1(=

{(2k+1). Then there exist some S, TCV(G), SN T=4¢, such that

- .
6(S.T:1)<0. Hence by Lemma 3, ) ¥(s;.t;)<0. From the assumptions of

i=1
this theorem at most two pairs (si,ti) satisfy the condiﬁion s;+h=a—1 and
s;+t;Z a for the othgr pairs (sj.tj)A If s;+¢;=a, ¥(s;.¢;)=0. (See the proéf of
Theor;em 7.). Hence wé rﬁay assume ¢(sj,tj)20 (1=j;=7r-2), §r+tré a—1 énd
¥(s,.t.)<0. Then s,=0and ¢{.=a—1. If ¥(s,_;.¢._,)=20,

0>(21c+1)<5(5‘.T;l)gjp(sr,t,,)=(21c—l+1)(a—1)f(2k+1)
‘ >2k+1, |

since 2k—{+1,a—1>0. This is a contradiction, because &(S,T;!l) is an integer.
Thus - Y(s,_. t_)<0, s,_+t_,=a-—1 and

r—1 T—1

V(s t_)=v(s.t)=(2k—1+1)(a—1)=(2k+1).. Therefore

0> (2k+1)6(S.T:1)>-2(2k+1)
and 6(S,T;l)=—1. On the other hand, ¥(s,,{,)=0 (mod 2), since ! is even and
t, is odd. Hence 6(S,T;l{)=mn, (mod 2). But by the Definition of n;, n, is an

even integer. This is a contradiction. []

By the same argument the following theorem can be obtained.
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Theorem 8. Let G be a (2k+1)-regular and (a—1)-edge-connected graph
(az1). §S,. ..., S,} is the partition of V(G) which has the same properties as in
the previous theorem. [f a 1is odd, then G has an l-factbr for any even inleger |

a—

salisfying 0= [= ! (2k+1) (cf Proposition E). O

a
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