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Abstracts
The radius r(G) of a connected graph G is defined by:

r(G) = min max d(u,v)
ueV(G) vevV(G)-u

where d(u,v) is the length of the shortest path in G between

u and v. G is radius-critical if deleting any vertex from G

reduces its radius by 1. 1In this paper we relate this notion
to the concepts of eccentricity and give characterizations of
edge-maximal 3-radius-critical graphs. In particular, we show

that every edge-maximal 3-radius-critical graph is edge-maximum.

1. Introduction

In this section we introduce some notions and obtain some
preliminary results on radius critical graphs. Let G be a
connected graph and let G' be the graph obtained by deleting
some giveﬁ vertex v of G. Let d and d' be the corresponding
distance functions. If u and w afe vertices in G then d(u,w)

is the length of the shortest path from u to w in G. Since G'
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need not be connected, the situation d'(u,w) = += is possible.
It is easily verified that:
d'(u,w) > d(u,w) for all u,w € V(G'")

The eccentricity e(u) of a vertex u in a graph G is defined by

e(u) = max {d(u,w) : w £ G}.

Let e'(u) be the eccentricity of vertex u in G'. We denote by

NG(u) the open (nearest) neighborhood of a vertex u, that is

-the set of vertices adjacent to u. NG[u] denotes the closed

(nearest) neighborhood which is defined by

NG[u} = NG(u)U{u}.

The furthest neighborhodd FNg(u) of a vertex u is defined by

FNG(u) = {w e V(G) | d(u,w) = e(u)}.

A vertex v in FNG(u) is called a furthest neighbor of u. 1In
case v is the unique furthest neighbor of u, we have:
e'(u) = e(u) — 1.

The furthest neighbor graph FN(G) of a graph G is defined on

V(G) where uv is an edge of FN(G) if and only if u e FN(v) or
v € FN(u). The radius rad(G) of a graéh G is defined by
rad(G) = min{e(u) | u e V(G)}.
For any connected graph G and non cut vertex v we have
(1) rad(G') > rad(G) - 1.
There is, however, no reasonable upper bound on the radius of G'.
If G is the join of the path of size 2n and an extra vertex,
~that is, p, + {v}, then
rad(G) =1 and rad(G') = n.
The inequality (1) leads to the definition of the following

class of graphs.
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Definition. A block G is radius-critical if for each v & V(G):

rad(G') = rad(G) — 1.

An r-radius-critical graph is a radius-critical graph with

radius r. The above discussion leads to the following

characterization of radius-critical graphs.

Lemma l: G is radius-critical if and only if
- (i) each vertex in G has a unique furthest neighbor

and

(ii) each vertex in G has the same eccentricity, (equi-

eccentric) .

The graphs (i) and (ii) in figure 1 show the necessity of the

two conditions:

equi-eccentric but unique furthest neighbor
non-unique furthest neighbors. but not equi-eccentric.

(1) (ii)
Fig. 1
In fact, condition (i) is not strong enough to make G a block,
as paths of even order satisfy (i) but not (ii). Further
properties of equi-eccentric graphs may be found in Ando et al

(11.



2. Polarities and Radius-critical graphs.

We begin with the following definition:

Definition. ¢ is a'Eolaritzl on a connected graph G if Y is a
fixed point free involution on V(G) such that

d(u,v) = d(u,y(u)) = v = P(u) for all u e V(G).

Le£ G be an equi-eccentric block such that each vertex has a
unique furthest neighbor. Then it is easily verified that
(2) Y{u) = FNG(uf/ for all u £ V(G)

defines a polarity. The next result shows that these are in

fact the only polarities on blocks.

Theorem 1. There is a polarity on a block G if and only if G

is radius-critical.

Proof: (<« ) By lemma 1, G is radius critical if and only'if
it is equi-eccentric and each vertex has a unique furthest’
neighbor. As remarked above, (2) defines a polarity.
( = ) Let G be a block with polarity y. First suppose for
some vertex u, e(u) = 1. Then

d(u,y(u)) = 1.
and G must be K,, since

d(u,v) =1 = v = P(u).
Thus we may assume that e(u) > 2 for all vertices u. Since G
is é block, for any k smaller than e(u), there must be at least

two vertices v,w such that

1. The authors are grateful to H. Enomoto for suggesting
this term.
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d(u,v) = d(u,w) = k.
Thus, by the definition of polarity
~d(u,p(u)) = e(u) and FNG(u) = {y(u)}.
Consider some vertex w in NG(w(u)). Clearly
e(u) — 1.
since otherwise Y(w) = u,
Therefore,

e(w) >

The inequality is in fact strict,
contradicting the assumption that { is an involution.

for all w € NG(w(u)).
By the lemma, G must be

e(w) > e(u)
This implies that G is egui-eccentric.

radius-critical.
G is radius-critical if and only if

Corollary.
FN(G) = nX,, n > 2.
= nk, and n > 2,

It is easily verified that if FN(G)
The statement then follows from

Proof:
then G must be a block.

theorem 1.

3-radius-critical graphs

In this section we study edge-maximal 3-radius-critical

show that a 3-radius-critical graph is edge-maximal
Finally we obtain a chacter-

graphs. We

if and only if it is edge-maximum.

ization of 3-radius-critical graphs.

We first obtain a bound on the maximum degree A(G), of a
Since every vertex

3-radius-critical graph G of even order p.
= ¢ for all v e VI(G).
(N[v]).

of G has eccentricity 3,
P(N[v]) NN[v]
Otherwise let x be a vertex not only in N[v] but also in ¢

JL
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Then d(v,y(v)) < 2, a contradiction. This implies that

deg(v) < (p-2)/2.
Define Hp = Kp/2,p/2 — (p/2)K2. That is, Hp is the complete
(p/2, p/2) bipartite graph minus a one-factor. It is easily
verified that Hp is 3-radius-critical, and, by the above remark,
also edge-maximum. Thus 3-radius-critical edge-maximum graphs

are (p-2)/2-regular.

Lemma 2.‘ Let‘G be a 3-radius-critical graph. Suppose u and v
are non-adjacent vertices satisfying:

(1) uwe V(G — (NIv] U [y(v)]1}

(ii) (u) ¢ Nlvl

then joining u and v by an edgé leaves a 3-radius-critical graph.

Proof: Let H be the»graph formed from G by joining u'and‘v,‘
then » ‘ ‘
d, (x,y) < dg(x,y) for all x,y € V(G) .

So we need only show that

A
N
L]

(3) a,(x,y) <2 implies that'dG(x,y)
Case 1. dH(x,y) = 1.

Either xy is an edge in G, in which case(3) is trivial, or Xy

A
N

is the edge uv. But if xy is the edge uv, then d, (x,y)
because of condition (ii). |

Case 2. dH(x,y) = 2

Let w be adjacent to x and y in H. If w is adjacent to x and
y in G, (3) is immediate. Thus we may assume that xw is the
new edge. Suppose X = u, w = v. Then condition (ii) implies

)

that v ¥ ¢(u). Thus
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dG(x,y) = d.(u,y) = 2.
Otherwise x = v, w = u. But then the condition (i) that u ¢
N[y(v)] implies y # Y (v). Thus
dg(x,y) = d (v,y) = 2.

Theorem 2. A 3-radius-critical graph G is edge-maximal if and

only if it is edge-maximum.

Proof: Suppose G is an edge-maximal 3-radius-critical graph
and that x is a vertex of degree less than (p-2)/2. Then we
will find two vertices satisfying the conditions of lemma 2,
yielding a contradiction to the edge maximality of G. Let
W= V(G) — {NG[X] U Nle(X)]}.

The degree condition on x implies that W is not empty. Suppose
v(W) ¢ N[x], and choose y € W such that y(y) & N[x]. Then
setting u = y and v = X, the conditions of lemma 2 are satisfiec

Otherwise, Y(W) € N[x] so v(W) ¢ N[P(x)]. In this case,
choose y € W such that yY(y) e N[y(x)]. Then setting u = y and
v = Y(x), the conditions of lemma 2 are satisfied. Thus the

theorem follows.

We remark that edge-minimal 3-radius-critical graphs are
not necessarily edge-minimum. Consider, for example, the edge-
minimal 3-radius-critical graph Hy = K5,5 — 5K2, which is in
fact edge-maximum!

Before giving a final result on edge-maximum 3-radius-

critical graphs, we need a new definition.



Definition. The distance two graph G2 of a graph G is defined

on V(G), where uv is an edge of G2 if and only if dG(u,v) = 2.

Theorem 3. G is anvedge—maximal 3-radius-critical graph of
order p if and only if G is Hp or G2 is an edge-maximal 3-

radius-critical graph.

Proof: If G is Hp the theorem is immediate. So let G be any
edge-maximal 3-radius-critical graph that is not Hp. Let y be
the pélarity of G and set |

E' = {uv € E(G) |y (u) = vI.
Then it may be verfied that G2 =G — E'. We will verify that
G2 is also 3-radius-critical edge—makimal.
Case 1. dg(u,v) = 3.
In this case v = y(u), uv £ E' and thus dGl(u,V) > 2. Further,
G is also edge maximum, sO | |

V(G) = N [ul U N, [¢(a)]
since G is (p-2)/2—r_égular. This. .implies that.

N [ul N N [W(w)] = ¢,
and hence dGéu,v) > 3. On the other hand, G2 is also (p-2)/2-
regular and is not K U K

p/2 p/2’'
connected and dGéu,V) = 3.

since G ¥ Hp. Thus G, is

Case 2. dG(u,v) = 2.
By definition, dG(u,v) = 1.
2
Case 3. dG(u,v) = 1.
Since Y is a polarity,
d (w, ¥ (v) = d (v, b)) = 2.

Hence uy(v) and vy (u) are edges in G2 and dG(u,v) = 2.
2

g
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We now see that G2 had radius 3 and every vertex has degree
(p-2)/2. Further ¥y is a polarity on G2 and G, is therefore
edge-maximal radius-critical. Under these conditions, we may
interchange the roles of G and G2 in the above case analysis to
see that (G2)2 = G, or in other words, the distance two graph
of G2 is G. This proves the sufficiency of the statement of

theorem 3.
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