106

ON ACYCLICITY OF CIRCUITS OF A DIGRAPH AND THE DUAL CONCEPT

Tokyo Institute of Technology

I. INTRODUCTION

For a circuit C of a given digraph G, consider the reference direction. With respect to this reference direction, C (represented by the edge set) can be partitioned as $C=C^+\cup C^-$, $C^+\cap C^-=\phi$ where C^+ is the set of all the edges whose directions follow the reference. Define the acyclicity of C by

$$a(C)=min(|C^{+}|,|C^{-}|).$$

The acyclicity of the whole graph G is

$$a(G)=min(a(C))$$

where min ranges over all the circuits. Trivially, $a(C) \le \lfloor \frac{|C|}{2} \rfloor$.

Usually, C is called cyclic or acyclic corresponding to a(C)=0 or a(C)>0, respectively. G also is called acyclic if a(G)>0.

The acyclicities of circuits of a certain set cannot be independent. For example, consider three circuits C_1 , C_2 and C_2' of G shown in Fig.1. It is easy to see that $a(C_1) + a(C_2) - a(C_2') \leq 3.$

Theorem 1 presents this kind of dependence relations.

The dependencies of circuits with respect to acyclicity lead to the concept of k-th acyclicity dominating set D of circuits, which is defined as a set such that

min
$$a(C) \ge k$$
 implies $a(G) \ge k$.
CED:

Theorem 2 determins the minimum first acyclicity dominating set.

It follows the complete dual discussion which treats the co-circuits (cuts) and their co-acyclicity (strongness of connectivity).

All these results are a version of our earlier works[1,2].

2. DEPENDENCY OF CIRCUITS WITH RESPECT TO ACYCLICITY

In this paper, terms "circuit" and "cut" are used to denote the simple ones. Circuits c_1 and c_2 are said to be confluent if $c_1 c_2$ forms a nonempty simple path. If c_1 and c_2 are confluent, $c_2' = c_1 \oplus c_2 = (c_1 c_2) - (c_1 c_2)$ is again a circuit.

Lemma 1: Suppose C_1 , C_2 are confluent and let $C_2^{\bullet}=C_1 \oplus C_2$. Then

$$|C_2^{\dagger}| - a(C_2^{\dagger}) \le |C_1 \cup C_2| - (a(C_1) + a(C_2)).$$

Proof: Let p_i , q_i , r_i denote the numbers of edges whose directions are coincide or not with the reference direction of those circuits contained in c_1 - c_2 , c_1 ? c_2 , c_2 - c_1 , respectively, as indicated in Fig.1. Then,

$$\begin{split} \mathbf{a}(\mathbf{C}_1) + \mathbf{a}(\mathbf{C}_2) &= \min(\mathbf{p}_1 + \mathbf{q}_2, \ \mathbf{P}_2 + \mathbf{q}_1) + \min(\mathbf{r}_1 + \mathbf{q}_2, \ \mathbf{r}_2 + \mathbf{q}_1) \\ &\leq \min(\mathbf{p}_1 + \mathbf{r}_2 + \mathbf{q}_1 + \mathbf{q}_2, \ \mathbf{p}_2 + \mathbf{r}_1 + \mathbf{q}_1 + \mathbf{q}_2) \\ &= \min(\mathbf{p}_1 + \mathbf{r}_2, \ \mathbf{p}_2 + \mathbf{r}_1) + \mathbf{q}_1 + \mathbf{q}_2 \\ &= \mathbf{a}(\mathbf{C}_2') + |\mathbf{C}_1 \cup \mathbf{C}_2| - |\mathbf{C}_1 \cup \mathbf{C}_2|. \end{split}$$

Q.E.D.

Theorem 1: Let (C_1, C_2, \dots, C_n) be a sequence of circuits such that

$$C_{\mathbf{k}}^{\bullet} = C_1 \oplus C_2 \dots \oplus C_{\mathbf{k}}$$

is a circuit and C_k^{\dagger} and C_{k+1}^{\dagger} are confluent for k=1,2,...,n-1. Then

$$|C_n'|-a(C_n) \le |\bigcup_{i=1}^n C_i|-\sum_{i=1}^n a(C_i).$$

Proof: For n=2, the proposition is Lemma 2. Suppose it is true for n < m-1.

By the lemma, since $C_m^{\dagger} = C_{m-1}^{\dagger} \oplus C_m$,

$$\begin{split} |C_{m}^{\prime}| - a(C_{m}^{\prime}) &\leq |C_{m-1}^{\prime} \cup C_{m}| - a(C_{m-1}^{\prime}) - a(C_{m}) \\ &= |C_{m-1}^{\prime} \cup C_{m}| - |C_{m-1}^{\prime}| + \{|C_{m-1}^{\prime}| - a(C_{m-1}^{\prime})\} - a(C_{m}) \\ &\leq |C_{m-1}^{\prime} \cup C_{m}| - |C_{m-1}^{\prime}| + \{|^{m-1}_{\cup} C_{1}| - ^{m}_{\Sigma}^{-1} a(C_{1}^{\prime})\} - a(C_{m}^{\prime}) \\ &= |^{m}_{\cup} C_{1}^{\prime}| - ^{m}_{\Sigma} a(C_{1}^{\prime}). \end{split}$$

Q.E.D.

A typical example is when $UC_1 = E$ forms a planar subgraph G in which C_1, C_2, \ldots, C_n are the inner meshes properly ordered and C_n' the outer mesh of G which is properly drawn on a plane. If we put $E_1 = E - C_n'$, the set of inner edges, the theorem is

$$a(C_{n}') \geq \sum a(C_{i}) - |E_{I}|.$$

Thus, the theorem has a meaning only when $\Sigma a(C_i) - |E_T| > 0$.

III. THE k-TH ACYCLICITY DOMINATING SET

Let S be the set of all the circuits of G. A subset D \subset S is called the k-th acyclicity dominating set if

(P) $a(C) \ge k$ (for all $C \in D$) implies a(G) > k.

A circuit C is called to associate the i-chord if the contraction of C produces a new circuit of length i. Let S(i) be the set of all circuits which are associated with i-chords.

Suppose C_1 and C_2 are confluent and $|C_1 \cap C_2| \le k$. Then Lemma 1 insists that $a(C_1) \ge k$ and $a(C_2) \ge k$ lead to $a(C_1 \oplus C_2) \ge k$. Hence the lemma.

Lemma 2: For any $C \in {}^{k}S(i)$, $S = \{C\}$ is a k-th acyclicity dominating set.

If G contains a circuit of length 2k-1 or less, it is trivial that $a(G) \not \geq k$. Hence the determination of the k-th acyclicity dominating set is meaningful only when G contains no circuit of length 2k-1 or less. That is, the girth of G is 2k or more.

Theorem 2: Suppose the girth of a digraph G is 2k+1 or more. Then, $D=S-\overset{k}{\mathbf{U}}S(i)$ is a k-th acyclicity dominating set.

Proof: Consider a circuit $C \not \in D$. There exist two other circuits C_1 and C_2 such that C_1 and C_2 are confluent, $C_1 \oplus C_2 = C$, and $|C_1 \cap C_2| \le k$. Furthermore, both $|C_1|$ and $|C_2|$ are strictly less than |C| because, for i,j=1,2

$$|c_{i}| < |c_{i}| + (|c_{j}| - 2k)$$

 $\leq |c_{i}| + |c_{j}| - 2|c_{i} \cap c_{j}| = |c|.$

If $C_1 \not\in D$, there is another pair (C_{i_1}, C_{i_2}) the length of each strictly less than that of C_i . Continuing the discussion, it is true that acyclicity being k or more or less of any circuit not in D can be checked by the members of D. Thus D is a k-th dominating set.

Q.E.D.

Most interesting is the consideration when k=1 for it distinct G between being acyclic or not. For this case, we can give the minimum dominating set.

Theorem 3: If the girth of G is 3 or more (i.e. G contains no parallel edges or self-loops), D=S-S(1) is the unique and minimum first acyclicity dominating set.

Proof: It suffices to show that for any $C \in D$ we cannot prove whether $a(C) \ge 1$ from the information of other circuits being acyclic.

Consider the graph G' which is obtained from G by contracting the edges of C to a vertex v. Suppose G is so oriented as: G' is acyclic and C cyclic.

Every graph has this possibility since G' contains no self-loops by assumption.

Then, in G, all circuits except C is acyclic. Hence S-{C} is not a dominating set.

Q.E.D.

TV. THE DUAL CONCEPT

We do not follow the dual discussion faithfully but, for reference, only the fact corresponding to Theorem 3 will be cited.

A 1-chorded cut is a cut which, after deletion of its edges, produce a bridge. A cut is co-acyclic if all of its edge do not follow the same direction.

Theorem 3': Suppose that G contains no cut of cardinality 2 or less. Then, the set D' of all cuts that are not 1-chorded is the minimum and unique set such that every cut of D' being co-acyclic implies G being strongly connected.

V. CONCLUSION

This paper studied the dependency of acyclisity of circuits. Theorem 3 and 3' can be extended to the general cases in which no restriction is imposed[1].

REFERENCES

- [1] Y. Kajitani and F. Hirose, "On acycle basis and co-acycle basis," Proc. Tech. Group on Circuits and Systems, IECE of Japan, CST76-15, 1976.
- [2] E. Okamoto, H. Satoh and Y. Kajitani, "The acyclicity of digraphs," Proc. 1977 Convention Record, 17, 1977.

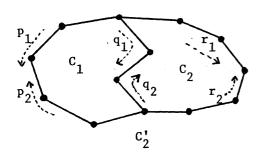


Fig.1 Confluent pair of circuits C_1 and C_2 and $C_2^{\dagger} = C_1 \oplus C_2$