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ALGORITHMS FOR CERTAIN PACKING PROBLEMS
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1. Introduction

Procedures using rectangular dissection have been proposed
for layouting an electronic qircuit on a planar semiconductor
chip(l)(Z). In the procedures circuit modules (components) are
assigned to elementary rectangles obtained by the dissection.
Unfortunately very often the sizes of elementary rectangles
become far larger than those of modules assigned to them.
Therefo;e a compaction procedure(3) is necessary to reduce the
whole chip size. The layout compaction can be regarded as a
special packing problem(4) with certain extra constraints.
Especially the compaction should not harm the planarity of the
circuit. Although the final object is to minimize the size of
the chip where the circuit is laid out, it seems there is
little hope to find efficient algorithms for achieving this
goal. Here twolpacking problems approximating the layout
compaction are formulated, and heuristic algorithms for

solving the problems are presented.

2. Problem Formulation
Let R be the rectangle representing the chip. We quantize R
and divide it into H horizontal bands. A band is a rectangle

with unit height and the width equal to that of R. See Fig. 1.
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The bands are numbered from 1 to H, the uppermost band being
No. 1 and the lowermost one, No. H. Let Mk(k=1,2,..,N) be a
rectangular module with quantized height hk and width Wy - We

require M, be placed within the region which consists of bands

k

from b1k to b2k‘ The horizontal edges of Mk must be on the

horizontal edges of some bands. If the height of the region(=b2k

—b1k+1) is larger than that of Mk’ we have freedom to choose

the bands on which M, is placed. Let Y be the uppermost of the

k

K is placed. We must have b1k§ykéb2k—hk+1.

Suppose a rectangular dissection is obtained for the given

bands on which M

circuit. This means that b and b2k for Mk(k=1,2,..,N) are

1k
fixed as well as the relative position of the modules. An
example of such a dissection together with modules assigned to
elementary rectangles is shown in Fig. 2. The blank spaces in
rectangles are redundant (Wires connecting the modules are laid
out on the spaces, and therefore they are not totally
redundant.), and we want to reduce such spaces by comaction.

Our first formulation approximating the layout compaction

is as follows.

Pl1. Choose y1, y2, e yN to minimize
N
max.  W., where W.= wr:wt=w if y <j<y, +h -1
15 8 j B k=1]{ k k k k 7k
=0 otherwise

1k;yk;bzk—hk+l for k=1, 2, .., N.

The condition yk;j;yk+h

- subject to b

-1 means that module M, is placed

k k
on band j, and Wj is the total of the widths of the modules

placed on band j. When we determine Yqr Yor o1 Yy by solving
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P1l, we move the modules to left(or right) as much as possible
along the horizontal edges of bands while keeing their relative
position as determined by the dissection. By doing this we
remove redundant spaces between modules. In general the width
of R thus achieved is more than the maximum of Wj‘s, since
there can be waste spaces between modules, as shown in Fig. 3,
but Wj includes only the spaces occupied by the modules on band
J.

In our second formulation the waste spaces stated above are
taken into consideration. This is not an easy task and the
cost for achieving this is to prefix the order in which the

positions of modules are determined.

P2. Choose Yy for k=1, 2 ,.., and N to minimize
max VgN), where V§0)=0
1<j<H ]
- (k) _ (k-1) . . }
Vj ‘—igzikvyk+i_l+wk if yk;j;yk+hk 1
= ng) otherwise,
subject to b1k;yk;b2k—hk+1 for k=1, 2, .., anva.

In our second formulation modelu M, is moved to right as

k
much as possible along the horizontal edges of bands, as soon
as its vertical position Yy is determined. ng) is the

position, measured from the left edge of R, of the right edge

of the leftmost module on band j after M, is moved to right (See

k
Fig. 4), and

(k-1)
max V .
1zizhy, Ypti-l

is the position of the right edge of the leftmost module on
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bands Yy yk+1, ..., and yk+h -1 before M is placed on bands.

k
3. Algorithms

| Since the number of modules in a circuit is very large, it
is essential to use efficient algorithms for layouting them.
Besides the formulations obtained in the previous section
themselves are approximations of layout compaction. Therefore
we do not stick to obtaining an optimal solution of Pl or P2,
but rather aim to algorithms which can achieve good overall
performance. Those presented in this section are so célled
heuristic algorithms.

We note that the vertical positions yk's of modules must be
fixed one by one in any event. In fixing the position of one
module, the problem is how can the remaining modules be taken
into consideration. Because of the reasons stated above, ‘we
avoid iterative procedure, that is, once the position of a
module is. fixed, it will not be changed again. Instead we set
up two types of criterion in fixing the position. ' The first
one is the possible maximum of the total width of modules laid
out on a band. This value, denoted by Uj for band j, is first
computed in step 1 (1) of Algorithms 1 and 2 below. When the
position of a module is determined, this value is changed
according to it.

The second criterion is a probabilistic one. Let pj(k) be
the probability of module Mk being laid out on band j. We
assume that the possibile positions of M, one bands from b

k 1k

to b2k are equally probable, and we have:
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j(k)==(3—blk+l)/Bk if blkéjib1k+hk—l
= hk/Bk if blk+hkij;b2k~hk
=(b2k-—j+l)/}3k if bzk-hk+l;];b2k
= 0 otherwise
where Bk=b2k_b1k_

hk+2_ See Fig.5. Algorithms 1E and 2E below

use this criterion.

Algorithm 1 for P1.

step 1. (1) Set K«{1,2,...,N}.
(2)° For j=1, 2,..., and N compute
N
= * * = : .
Uy ]zqwk where w¥ = w, if b  <j<b,

0 otherwise

step 2. Choose keK such that

max U. subject to blk;yk;bzk—hk+l
Y SIZy, thy -1 ,
is minimum. Fix Yy
step 3. For j=b1k’ b1k+1,..., and b2k’ set |
»Uj*—Uj—wk if blkij;yk—l or yk+hk;j;52k

+Uj otherwise

step 4. Set K«K-{k}. If K=¢ stop. Otherwise go to step 2.

If there are more than one module which give the minimum of
max Uj at step 2, the module which gives the minimum of the
next to max Uj is chosen. Further ties are broken in the same

way.



Algorithm 1E for P1.
step 1. (1) Set RK+«{1,2,...,N}.

(2) For j=1, 2,...., and N compute
u. = ) wkpj(k)

step 2. Choose keK such that

max U. subject to bj 32V by ~hy +1
S

is minimum.

step 3. For j:blk, blk+1,..., and b2k set

Uy*U Wy py (k) If by <icy, -1 or  yp+hy<icby,

+Uj_wkxﬁ(kj+wk if ykijéyk+hk—l

e
an
[y

step 4. Set K«K-{k}. If K=@, stop. Otherwise go to step 2.

Algorithm 2 for P2.
step 1. For j=1, 2, ..., and H set Qj+0. Set k+<1.

step 2. Choose Yy SO that

?3? +h-49j subject to blk;yk;bZk—hkfl
is minimum. Fix Ve

step 3. For j=yk, yk+1,..., and yk+hk—1 set

Q.+« max Qi + Wi -
y, Sigy, +h -1
k=="k "k

step 4. If k=N, stop. Otherwise set k<k+1 and go to

step 2.



Algorithm 2E for P2.

step 1. For j=1, 2, ..., and H set
(1) Qj+0.
(2) § )
P.+« w, p.(k
I k7

U.<P.+0Q.
(3) J J QJ
Set k<1

step 2. Choose y, so that

max U. subject to b,,<y,<b..-h +1
yk;j;yk+hk_l 3 1k="k="1k "k

is minimum. Fix Vie
step 3. For j=blk, blk+1, ..., and b2k set

(1) Qj<— mgx Qi + Wy if yk;jiyk+hk_l
y il;y‘k+hk—l .

k_.__
*AQj ' otherwise
2) P.<«P.- L (k
(2) 5P, kpj(),
3) U.*P.+0Q..
(3) J ] Q]

step 4. If k=N, stop. Otherwise set k<k+1, and go to step 2.

If we apply Algorithm 1 to the example shown in Fig. 2, we
obtain Uj as shown in Table 1 below, where I is the number of
iterations of step 3. The modules chosen at step 2's and their

vertical positions are given in the last two rows of Table 1.

We get wkpj(k) as given in Table 2 for the example. Applying
Algorithm 2E to the example, we get Uj as shown in Table 3.

The layout of modules after compaction is shown in Fig. 6.
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Table 1
k={1, 2, 3, 4, 5, 11, 12}
=] 0o 1 2 3 4 5 6 7
j=1 | 5 5 5 5 5 5 5 5
216 a4 a4 4 4 4 4 4
3/9 9 8 8 s 5 5 5
4 {12 12 11 9 9 7 4 4
U. 5 112 12 11 9 9 7 7 7
610 10 10 8 8 6 6 4
7/10 10 10 8 8 8 5 3
sl 8 8 8 6 6 6 6 6
9|l 9 9 9o 7 4 4 4 4
K= 1 5 12 3 11 4 2
¥, = 1 1 2 8 7 5 4
Table 2
k=| 1 2 3 4 5 11 12
3=1 | 0.50 0.25
2| 0.50 v 0.50 0.29
3 0.67 0.75 0.75 0.57
4 1.33 1.50 0.50 0.50 0.57
w,p.(k) 5 2.00 2.25 0.25 1.00 0.57
J 6 1.33 1.50 1.50 0.57
7 0.67 0.75 1.50 0.57
8 1.50 1.00 0.57
9 1.50 0.50 0.29
Table 3
k= | 1 2 3 4 5 6-10 11 12
j=1 | 3.25 2.25 2.25 2.25 2.25 5.00 5.00 5.00 5.00
2 | 2.79 3.79 3.79 3.79 3.79 4.29 4.29 4.29 6.00
3 | 3.74 3.74 3.07 3.07 5.32 4.57 4.57 4.57 6.00 -
4 | 6.40 6.40 5.07 5.07 6.57 6.07 6.07 5.57 5.00
U. 5 | 8.07 8.07 8.07 8.07 5.82 5.57 6.57 5.57 5.00
J 6 | 5.90 5.90 6.57 6.57 5.07 5.07 6.07 4.57 4.00
7 | 4.49 4.49 5.82 5.82 5.07 5.07 6.07 6.57 6.00
8 | 4.07 4.07 4.07 5.57 5.57 5.57 5.57 6.57 6.00
9 | 4.29 4.29 4.29 2.79 2.79 2.79 2.79 6.29 6.00
y,= | 2 5 8 3 1 7 2
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Algorithm 2E was computer programmed. An example of

se—y

¥

computer outputs is shown in Fig. 7.

4. Concluding Remarks

Mathematical modeling or problem formulation is the first
step to be taken to accomplish automated circuit layout. This
is an important but very difficult step, since there are many
engineering restrictions to be observed in layouting a circuit.
Especially, both the sizes of modules and the connection
among them need be considered, that is, graph theoretical or
combinatorial handling only is not enough. Here layout compac-
tion is approximated by packing problems with regions for
placing modules being specified. Only compaction in horizontal
.direction is described. Compaction in vertical diréction which
is to follow the compaction in horizontal direction needs
another formulation.

Computer outputs of Algorithm 2E indicate usefulness of
the algorithm, The crucial point with this algorithm is the
order in which the positions of modules are detefmined. In
our case this order can be obtained in a natural way from
rectangle dissection. More waste spaces tend to appear as
more positions of modules are fixed. Modification of the
algorithm such as dividing the original rectangle into two or
four subrectangles and then applying the algorithm to the sub-

rectangles would result in better layouts.
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