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On the equation VZW = K2 sinhy ; Poisson -

Boltzmann's equation as called by Chemists.
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In this symposium of non-linear waves, it might be inter-
esting to report on specific applications of some boundary
value problems. Particularly, we feel that with the large
advances made in non—linear\analysis<in the'past_few years,
applications to specific physical va.p. are needed to ensure
a sustained growth of this fascinating field.

The equation (Poisson-Boltzmann)

VY = 2 sinhv (1)

provides such an example if one allows two surfaces S S

12 "2

with Y =0 at o Y = wi on Si i=1, 2
The origin of this "model" is very simple indeed : thé Poisson

equation for electrostatics
2
V% L p | (2)

together with the fact that two bodies of surface potentials
¢l 5 ¢2 are immersed in an 1 - 1 -electrolitic sdlution.
Thus the charge density op ‘is assumed to haVe”a_superposition
of positive and negatiVe chargs with a Boltzmann weight or

P £ (exp(-Bg¢) - exp(Bgd)) with B being inverse temperature
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and q the electronic charge. Thus equation (2) takes the
form (1) for the dimensionless potential ¢, with x being
Debye's inverse length . Tt is worth while to note that
in actual sysﬁems, Kk 1s very large (o(n)~1109) thus even
very small potentials can produce finite Laplacian, which excludes
perturbation of Laplace.equation in a straighﬁforward manner.

The simplest reélization of this model (calledbalso
Gouy - Chapman) 1s the one-dim (parallel plates) linearized

version (D.L.V.O. theory)5 The trivial o.d.e is

=Ty, w0 =y, WD) = b, NG
with the immediate solution

V= srreery ¢ q;l’sinh[;;;(L - 1)1 + ¥, sinhlexD) (4)

Since the chargé densities on the surfaces are proportional

to the discontinulties of ay/dx we can see that for different
separations L, ¢ can be monotone or double-layef type (i.e.
dy/ax. = 0 at x = &, 0<% <L) . 1In particular, if \pl/w2 > 0,
the system if repulsive or attractive according to its sepa-
ration. This is a highly non-trivial comment since it deviates
from classical electrostatics, and it eluded chemists for nearly
a century. This phenomenon persists in the non-linear version
as well as in higher dimensional systems. It also produces
serious difficulties in numerical evaluations of systems of
interest. Thus its aspect must be properly understood in order
to usefully utilize the model. The chemists measure "stability
parameters" which are integréls of exp[E{¢(T)}]d> . This means

that an inaccurate ¢ could lead to several orders of magnitude

1

errors, as noted by'Sasaki and others.
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It is quite illustrative to analyze the system of two
unequal sphers 2 , utilizing the fact that cylindrical symmetry
along the axis of the two sphers reduces the dimensions. More

precisely, equation (1) takes the form

no

3 1l 9 3 _ 2 .
(g;z + T 57 r 3T JY = g~ sinh ¥ (5)
. _ 2 2 _ 2 _ ‘ 2,.2_2
with w-—wl on z° 4+ r° = aj and w-—¢2 on (z-al—ag—H) tr-=as,
where suface to surface distance is H and the radill are aq, dy

of spheres 1 and 2 respectively. The scale transformation

z = a) + « 27, H=xTh, r=«2R with « 1large allows to
analyze to leading order in K2
2 ' ' ' '
—§§-w = sinh ¢ ‘ (6)
37
with 9(S;) = ¥;,  ¥(S,) = ¥, and surface-surface separation

is given by

- R2, 1 1 .
Az-h+T(;l-+5§)‘_} | | (N

and S S take approximately the shapes of parabolas. Since

1> "L

the first integral is immediate, one obtains
(2%)2 = 2 coshy + 8(R) : (8)

and the same question rises can 23y/3Z vanish at an interior

2 2
. R R . .
point Q(RL - Egz < % (R) < h + 555 . If vanlshlng takes
place, &®(R) = -2 cosh{y[2(R)]} and the second integration is done

in two stags to obtain a transcendental equation for 3(R).
Otherwise, one integrate the R.H.S. from surface to surface and

the LHS from wi to ¥, to obtain equation for ®(R). This method
yields sufficiently good approximation and connect asymptotics, so

that improvements can take place on the whole equation (1) by the

3

use of bispherical coordinates-.
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In order to emphasize the importance of symmetry, we
address the problem of two parallel cylinders, where the
system is two—diménsional in cartezian coordinates.
In this case, scaling is not clear to be as useful.
Thus, we need to assure correct asymptotic behavior, so
we take the cylindrically symmeﬁric part, and use the
-aSymptotic expansion of the third Painleve function to
obtain our starting solution. By the use of a bipolar
coordinate system and the knowledge of their Greenfs
func one iteration (that preserves the correct
asymptotics) insures satisfaction of the.boundry,conditions,

ahd the rest is straightforwards.

’Explicitly the two cylinders problem is formulated as

follows.
a2 2 ,
(25 + 25 9 =« sinny (9)
0X y ‘
_ 2, 2 2
w-xpl on X +y -al
_ 2 20 2
Y = ¢2 on (x-4)" + y~ = a,
y > 0 as x2 + y2 »> ©

with radii ay » a5 and surface to surface distance H .
Asymptotically, ¢ 1is really radially symmetric, therefore
1l 23 3 .
5 3p p 50 Y = sinhy (10)‘

with o = k (x° + y2)L/2
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This is the Painleve equation of the third kind that appears
in the theory of the Ising modelu- . Let ¢ = logn ,
n=1+¢f7 |[f] << 1 . Equation (10) takes the form (Modi-

fied Bessel's)

" o+ p—lfl - f =0 (11)

In other words

1/2

n(x,y) = 1+ ¢ K e(xZy2)2) 12

and the constant C 1is angular dependent. It is convenient

to select it as 2/mw

Define
wo = log(l-+ %KO(K(X2+y2)1/2)) (12.a)
sinhy . = gK (K(X2+y2)l/2) (12.b)
0 ™0
and the iteration
2 2
P 9 2
(== + —5) ¥ = k“sinhv (13)
aX2 3y2 n+l n :

Define the coordinates wup, v Dby

a sinhyp — a sinv - a (1)

X = = : o =
coshp-cosv J coshu- cosv ? coshy~cosv




The curve u = u. 1is a circle of radius alcschull

1
a cothul ,ky = 0 , the curve n = %ﬁ

with center at x
is a circle of radius a with center at x =y = 0 , and

the curve u = is a circle of radius a|cschu2[ with

Ho
acothu2 s, Yy = a

1]

center at x

Equation (13) thus takes the form

T RO B SR VSR I - 24
) [Bu (aau * sty 3y (@ Slnvav)]wn+l k“sinhy (15)
with Green's function G given explicitly in ref.(3)

The rest is straightforward but tedious.

We end this note with the hope that the elegant and
powerful soliton theory will yield a better approach to

these kind of problems in the near future.
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