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Non-axisymmetric flow in a rotating cylinder

— Incompressible and compressible fluids —

By KEIZO NAKAGAWA, HIDENORI TAKEDA and TAKUYA MATSUDA

Department of Aeronautical Engineering, Kyoto University,

. Kyoto, Japan

Analytic ahd numerical calculations.on non - axisymmetric
flows in a rotating cylinder are performed for both compressible
and incompressible fluids. Non - axisymmetric character is
induced by the bottom shape such as a sloping flat bottom or
an off - axial paraboroid. = In the case of the incompressible
fluid the flow field is independent of the axial coordinate
due to the Taylor - Proudman theorem, and the phenomenon which is
called westward intensification is observed. In the compressiblé
case, on the other hand, flowlines are confined to the surfaces
whose radial coordinates are constant, while non - axisymmetric

weak axial motion is induced by the bottom slope.
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1. Introduction

Dynamics of rotating fluid has been developed to understand
an oceanic or an atmospheric flow (see Greenspan 1968) and a flow
in a gas centrifuge to separate uranium isotopes (see Soubbaramayer
1979) . In the former case the fluid is:usually considered as
incombressible and‘a Coriolis‘force plays more dominant rolerthaﬁ'
avcenﬁrifugal force, while in the latter compressibiiity and the |
centrifugal force are significant. Matsuda, Sakurai ahd Takeda
(1975) showed, howeVer, that the nature Qf a compressible flow
in a rapidly rotating cylinder is similer to the‘corrésponding
incompressible one , as long as the flow field is axisymmetric
and the cylinder wall is thermally conducting. In the series of
papers, Matsudé, Héshimoto and Takeda (1978a , 1978b ) ciarified
that the properties of a compressible fluid are very different
from the incombressible counterparts if a cylinder wall isk ‘
thermally insulated. In the present paper .non-axisymmetric
flows are investigated to find possible differences between
incompressible and compressible fluids. |

Pedlosky and Greenspan (1967) and Beardsley (1969) ébnsidered
the slow, viscously driven motion of an incompressible homogenous'
fluid in a rotating cylinder with a sloping flat bottom. They
studied the steady motion produced in the cylinder when the ubber
surface normal to the cylinder axis rotates at a differenﬁ rate
than the rest of the container. They showed that/the*preéehce
of the bottom slope inhibits a'geostrobhic wind of order unity
and introduced a non-symmetric side wall boundary 1éyer. Kuo and
Veronis(1971) studied a flow indﬁced‘by a source/éink in a pie;v

shaped basin with free surface and obtain a similar flow pattern
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as Pedlosky and Greenspan (1967).

These studies were performed to simulate .the large-scale
oceanic circulation. Inba simple model of the ocean a hydro-
static balance and an incompressible homogenous fluid are assumed
To treat the local motion 1n the ocean, we conSider two dimenSiona
flow on a rotating large spnere | Then the follow1ng coservation

law of potential vortic1ty holds (see Charney l973)

_D_( f+3 } =_"Oi ,. | | (1.1)

where D/bt is the time deriyatiye followingtthe motion of a fluid
particle f = 29sirxw (Q: angular velocity of the earth and y:
latitude) 1S Coriolis parameter, g is the relative vorticlty
component normal to the surface of the earth, and h is the depth
of the fluid From this relation we can s1mulate the B-effect
(the effect due to the latitudinal variation of the Coriolis
parameter) by the variation in the depth of the fluid. In the
above works i.e. Pedlosky & Greenspan (1967), Beardsley (1969),
and Kuo & Veronis (1971), a boundary layer is found to be formed-
at the western s1de wall of the container The flow in the
boundary layer is 1ntense and this phenomenon is a model for a
westward inten51f1cation in an oceanography, such as the Gulf
Stream or the Kuroshio Current )

These two models of Pedlosky & Greenspan (1967) and Kuo &
Veronis (1971) are united in a concept of topology of a
geostrophic contour, which 1is a line of equal depth of fluid
In the axisymmetric flow with free surface, for example, all

geostrophic contours are closed. In this case the 0(1)
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geostrophic wind can blow along geostrophic contours. When
none of geostrophic contours are closed as 1in the case of
Pedlosky & Greenspan and Kuo & Veronis, the O(l) geostrophic
Wind is inhibited and a boundary layer is formed along the
western boundary. In §2 an intermediate case in which-some of
geostrophic contours are open 1s con51dered and a gradual
tran31tion from one to another is studied , Such an intermediate
_condltlon is realized in a rotating cylinder whose bottom shape(;
is an off—aXial parabor01d and whose upper surface rotates faster
or slower. | o | , | . | a a
Now turning to the comoressible flcid thebsitﬁetion is
very differeht ‘, Due to the compreSSibility and the strong
centrifugal force a stable stratification is made along a radial
coordinate. Therefore floles confined to a concentric anulus
even if an axisymmetric condition is dropped. We focus our
attention on the non-axisymmetric flow prodwced by a sloping

bottom in §3.

2. Ihcompressible fluid

241 hBasic eqcations
Consider the fluidiin“thevcircular'cylinder‘roteting ahout
the vertical z;axis’with aiuhiform engular velocity. Thekubper-
surface rotates steadily with an engular velocity Q+AQ; while
the rest of the cylinder rotates at Q(figure 1.). The steady,
linealized, non—dimensiohal equations of motion and continuity

for a viscous incompressible fluid written in terms of the
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rotating frame of reference are

2k =% = -vp + Ea | (2.1)

, (2.2)

where q is the velocity vector, k is the vertical unit vector,‘
E=v/ QL2 is the Ekman number and v is the kinematic viscosity.
The léngths are écaled’in terms of the radius L of the Cylinder;
The. pressure is scaled by pQLU where p is the density and
U =1AQIL is a characteristic velocity.

The top cover is flat and normal to the z-axis at z = HO’
while the bottom shape 1s expressed in terms of the following
covéfgent series:

'm8
) (2.3)

Z = H(ro) = FmZi'o ha 0+ €
where it is assumed that F« 1l and the bottom surface is
sufficiently smooth. The boundary conditions on ¢q are
g = (0,r,0) at z = Hyand g =0 at r = 1 and z = H(r,0).

Since we have an interest in the interior flow, we treat
implicitly the Ekman layers developed on the top and bottom
surfaces. The Fkman layer suction is then expressed as a
compatibility condition, on the interior velocity components

u, v and w, just outside the upper Ekman layer:

wegE (2-3) ot Z=H, (2.1)
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where ¢ is the z-component of the vorticity vector w. The Ekman
compatibility condition also holds on a slightly inclined bottom

surface, and we have

(§-n*)=3E (w- M) at Z=HW 6), (2.5)

where n* is a vector normal to the bottom surface, and the
modified Ekman number Ex is used because of the dinclination of

the bottom surface. Since we assume that the angle between the
normal vector n* and the rotation axis is on the order of F, Ex

is nearly equal to E for F« 1. The normal vector mn* is expressed

in terms of cylindrical coordinate (r,0,2z)

wmé

W CFE e SFEkewd™ 1) e

m=C r ) »

Introducing (2.6) into (2.5) and noting F<« 1, we obtain

(2.7)
at Z= Hre) . '

The interior dynamics are constrained by the Taylor-
Proudman theorem. The interior velocity components are
independent of z to O(E), therefore the fluid motion is columnar.

Equating vertical velocities in (2.4) and (2.7) we get

w ime “3‘

3+ F(U'icg—hﬂe‘mﬂ v baimeT ) = g7 (2.8)

=

E

- 5 -
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The interior flow satisfys the geostrophic and hydrostatic
relations ¢ 2 kxq = -Vp , therefore we can eliminate u and v

from (2.8) favouring p to yield

ime

S L2 e 0P P “ae
eap - ey + 2 ) whae 2€ (2.9)

where € = EX/ F.
For. instance we consider the cylinder whose bottom shape

is an off-axial paraboroid given as.

Huwe) = F(-ir+brose) - O (2.10)

H

where b is a radial distance between z-axis and the apex of the
paraboroid. Substituting (2.10) into (2.9), we obtain the basic

equation to be solved :

CPsa) 22— pame B = e
eabP+ () = wsf) =& b snb 3T 2‘c ) (2.11)

This equatlon is made 51mpler in the rotatlng frame whose axls

is a Vertlcal llne through the apex of the bottom, i.e. r =0b,

8 = 0. In thls frame (R, ¢,z), (2.11) is written as
2P _ \
P 56 :



which is identical to the equation derived by Kuo & Veronis (1971).
From the geostrophic balance equations pressure field p can be
considered as a stream function , and therefore \the boundary
condition for p at the side wall should be p =\O_ In the present
paper Wwe assume E%<<F<<1 » SO We have e<<1. This condition
is the same as Stommel's (1948) model of the wind-driven oceanic

circulation.

Pedlosky & Greenspan (1967) considered a sloping flat bottom,

that 1s
Har,ey = tinF-x =~ Ff osb | (2.13)
where F is a small angle of the slope. In this case the basic

equation reduces to

6AP4—§%Q§% +‘ﬂne§$ = 2¢ (2.14)

2.2 Solution in the case of b >1
If e<<1 and b>1, (2.11) or (2.12) can be solved by the
method of singular perturbation (Cole 1968) . Neglecting eAp
term of (2.12) , a solution in an inner region is obtained as
follows:

Pr = 24 + f(RY (2.15)
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where f(R) 1s an arbitrary function of R and is determined by

the boundary condition. Neverthless there is not enough

arbitrariness to satisfy the boundary condition completely along

the side wall. Hence proceeding in the usual manner, we stretch

the radial coordinate near r = 1 as

| — ¢ = ¢ 5 ) (2.16)
and can reduce (2.11) to
3P . 3P '
2 bsing £ = 2.1
2% + S 35 O , 4 ( 7)

where ﬁ is a boundary layer éorrection. The boundary conditions

A
for p are

P=-"P (r=1) ot % =0,
(2.18)
P— O when % —> co |
The solution of (2.17) satisfying (2.18) is
A -bs'm()”: )
Pe-Pir-y-e S (o<BaT) . (219)

This boundary layer can be called the Stommel boundary layer,

since (2.11) is essentially same as the Stommel's equation to

-8 -
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explain the westward intensification in an oceanography (Stommel
1948). This boundary layer exists only for 0<6 < m, that is

along the west coast. Satisfying the boundary condition pp = 0
at r = 1 and m £6 £2m, f(R) is determined and the inner solution

Pp is expressed in the original frame (r,6,z) as

i

| PL - oe [— TM;‘( Y‘sme ) _ Tcm,\.'{ (4},’-—“—\"2*' 2blcos®) ) } } (2'20)

b-Yewsé 267 (=P 2beesd)

The thickness of the Stommel boundary layer in this problem
is € /sin 6 , which diverges as 6 — 0, 7. In the region near
8 = 0 and m, the boundary layer approximation is not valid. In
figure 2 an analytic solution and a numerical solution computed
byvalsuccessive over-relaxation method are shown and compared
in the case of € = 0.01 and b = 1.5

For 0 <b <1 the inner solution (2.15) is not valid any
longer, for thé term 2¢¢ dose not satisfy a periodic condition
when ¢ increases.from 0 to 27 . In the Kuo & veronis' problem
or our problem for b >1, the range of ¢ is limited to O<<$min

< ¢ < ¢ <27 and any difficulty does not occur.
- max

2.3 Solution in the case of 0 <b<<l
A simple analytic solution of (2.11) for 0 <b <1 could not
be obtained. But in the case of b<1l we can get an analytic

solution by expanding the pressure p in terms of b, i.e.

P=Pw + b Ruwe) +b-Bergy + - (2.21)
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The substitution of (2.21) into (2.11) leads to the following

zeroth and m-th order equatiohs:

1d (o SR o
rdr“%%) =2, (2-22)
GA‘PM + me —_ kOSe bFW\-‘i + Sihe aPm—l (2‘23)

20 r 00 ol

(m= 1,2, - )

The boundary conditions for these egquations are Pp= P, = 0 onc«¢
r =1
The zoroth order solution should be axisymmetric and is

easily obtained

2
Bo= -y (2.24)
The first order equation, using (2.24), is

enf + —glg— = I sind | ‘ (2.25)

A particular solution of (2.25) is

P|P = - Y‘(OS@ (2.26)

To solve the homogenous problem, the pressure field Py is

expanded in a Fourier series

- 10 -
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P =2 {Cutwsng + Sar) snnd | (2.27)

gubstituting (2.27) into the homogenous equation of (2.25) and

introducing the function X =C +1iS_where i =/=1, the Fourier

coefficients should satisfy the following equation

Ad (pdhay - (in o W _ |
rar M ar) (< +‘-\2)Xn o, (2.28)

with the Bessel function solution given by

Xo = Jn (/—%‘.e~ r) (2.29)

The total solution of (2.25), together with the boundary

condition, is

L (€% ry e Y

Re
Rz—r‘cose-i- :
RelJ (e e3)]

cos® | (2.30)

where Re[a] indicates a real part of a.
L
Near the side boundary, that is r = 1 , r/e? is a
considerably large value, and from the asymptotic series of a

first order Bessel function we can estimate the boundary layer

contribution.

- 11 -
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\ r
" L _r
- el § i 2 ré"L
RelJile™ r/e)] ~ [= e”
AT
- (2.31)
=(e *-n
i fl e " :
AT (€75 ) ,
where n 1s a stretched coordinate of r as
3
- r = ¢ 1 (2.32)

The equation (2.31) shows the éxistence of the boundary layer
with thickness of e‘7 along the side wall. Therefore the first
and second term of the solution (2.30) correspond to the inner
solution and the boundary layer component respectively.

To clarify the structure of the boundafy layer by simpler
functions and to proceed to higher order solutions easily, we
use the boundary layer equation written by the stretched

coordinate n given by (2.32)

2 DA
____L? + —t = O (2-
[ 26 ) 33)

where Bl is a boundary layer correction with boundary conditions

as

P = - Pra=1) it 1= o0
(2.34)

P, —> 0 when Yl - 00'

- 12 -
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Thus the approximate solution of (2.25) is given by

R = ‘RP + R

) | : 1,
...-V‘(oge + e oS (91—5) . (2.35)

3=

The right hand side of (2.23) for m = 2 has only boundary
layer components, and therefore it 1is shown that higher order
solutions than the first order give the variations only in a
pounbary layer and a small constant of O(bm) in the inner region}
For this reason the flow patfern in the inner core is determined
by the first two terms of the expansion with respect to b.
Omitting the side buondary layer contribution, the éolution in

the inner region is

Po= 2 (F=1) — bl ws§

_-‘ 2 2 ’ 2
R LTI I E Al S (2.36)
)
where x =rcos®, y = rsin6, and the constant terms arising
from the higher order contributions are neglected. This solution

indicates that the flow pattern is axisymmetric about the summit
of the'bottom. It can be obviously shown that a necessary
condition for the convergence of the series (2.21) is b <e%.
Both analytic and numerical solutions for b = 0.05 and ¢ = 0.01

are shown in figure 3.

- 13 -



30
2.4 Results

In the axisymmetric case, i.e. b = 0 , the first term ,
eAp , of (2.11) balances with the right hand side, 2¢ , and the
0(1) axisymmetric geostrophic wind can blow. Introducing small
b , the axisymmetric flow pattern shifts only by b and eg—layer
is formed along the side wall. The order of magnitude of
pressure field still remains O(1). On the other hand, for b >1
the solution (2.15) clearly shows that p is 0(e), which results
from the fact that the second term of (2.12) balances with the
2€ term. In this case the Stommel boundary layer of thickness
€ 1s developed along the western boundary. In the case of b1,
an intermediate situation between the above two cases is expected.
Since we could not scolve the case of b<1 analytically, we
give numerical solutions for b = 0.5, 0.7 and 0.9 in figures 4,
5 and 6, and it seems to come up to the above expectation.” In
figure 7 +the locus of the point of the minimum pressure is drawn,
and the transition of the flow patfern with varying b can be seen.

Pedlosky & Greenspan's equation (2.14) can be easily solved

by the same method as the case of b >1 and is shown here.

-5B- (-¥) €

ze[‘é{l—ze }*r(‘—x’)%J (ceB<m)
P (2.37)
2e( Y+ (I-f)%] (WsOs2m)

which is also 0(eg).
These results are explained in terms of the geostrophic
contour. If all geostrophic contours are closed such as b = 0

in (2.11), the flowlines are along geostrophic contours and the

- 14 -
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magnitude of the flow is 0(1). On the other hand, if none of
geostrophic contours are closed as in the case of b>1 in (2.11)
or in the case of (2.14),vthere are no geostrophic winds of 0(1).
This is caused by the fact that velocity components should be

independent of z and the change rate of the hight of fluid column

should be 0(E?). The transition from the former case to the latter
should be gradual. In the intermediate case such as 0<b <1l ,
some geostrophic contours are closed. The strength of the flow

is between 0(1l) and O(e), and along the side wall the gg—layer

(1/2<n<1) seems to be formed.

3. Compressible fluid

3.1 Basic equations

Consider a gas in a cylinder rotating about a vertical axis.
The mechanism to drive a stéady flow is the same as tﬁat.of an
incompressible case, i.e. the top plate rotates with an angular
velocity @ +AQ and other walls rotate at Q. The angular
velocity Q is so high that the effect of the earth's gravity can
be neglected. The non-dimensional linearized basic equations,
governing the deviations in the fluid motion from the rigid
rotation with angular velocity @ and constant temperature TO R

are

div § + Geru = 0, (3.1)

- 15 -
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-W**‘T*a'c%?:%;l«t“ tygp@-nE ] 32
n '+-élo—’—g—_g ’=—§;{idf + gy W)+ %%%J ) (3.3)

é~%§=—é[aw +§E(d;v@)J (3.
—4hru = -g—g aT | S - (3:5)
P= § + T, ‘(3"_6’)

where

A'=-¢;§lr(r§~‘:)r-#-§%zf%z—;‘) L = A“;‘g ’ (3.8)
Gy = MR_L%QZ E ;R)E | h ;_u_-_:xirﬁo 4, | _(3.9)
€ = &P { G (F=D} | )

Here g = (u,v,w) is the velocity vector, M the mean molecular

weight of the gas, R the universal gas constant, v the kinematic

- 16 -
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viscosity meaéﬁred at the side wall and Yy the ratio of specific
heats. The non-dimensional parameter GO is the square of the
rotational Mach number, E is the Ekman number, Pr is the Prandtl
number and h is a parameter measuring the heat generation or
absorption due to the radial fluid motion. " In the above
expression the velocity, femperature and position have been. non-
dimensionalizéd by 1AQIL , TO, and radius of the cylinder L,
respectively. In this paper we assume that E<<1 and that G,

and Pr are of order unity. The boundary conditions for the

present problem are g = 0 and T 0 on the side wall and the

bottom, and ¢ = (0,r,0) and T 0 on the top end.
In the inner core the radial velocity u is O(E) and physical

variables are normalized as

Ww=E U ’ g = 'UI ) W= .w-x ;
o (3.11)
T=T: , P=7r -, § = 5, AR
where the Suffix I refers to the main inner flow. Now all
variables are expanded in Fourier series, e.g.
> e (3.12)
u[ = %o U LT, 2) e . ‘

Substituting (3.11) and (3.12) into (3.1) to (3.6) and retaining

only relevant terms, we have

imé '
Wa y 0™ = @ (3.13)

[~ (%
™ |E
.-’-
if\'ls
—7|§~
;j
—1.

- 17 -
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%;o ( 11)-‘1\ + Y‘ T\M + Go r ) e —_ O , (3.1”)
2u°+f(:zum+£f_l%)€ime=~‘—i(f V, eme) (3.15)
"= GcEr GR m=g " ) )
2 | o>F e ] - B )
2 AR LS = -— A - &) .
% GE o2 © € (L w.e ), (3.16)
) it : wnd _ i L. ind
- 4ht L Une = 'E:;A(Z;c""e )| (3.17)
Po = Su + T. (3.18)
We can separate the axisymmetric mode, i.e. m = 0 , and non-
axisymmetric modes. Axisymmetric equations are
dWe  _ (3.19)
o °,
o e T, + 2o (3.20)
’ * G o f '
|
2u° = a ijo "U-o , (3-21)
k- (3.22)
02 !
- AhPde = = AT, (3.23)

- 18 -



P, =8 + T, (3.24)

where

N, PO _ 1
kv‘ br)*—bil y Lo A‘) r2 -

=‘_Lﬂé. (3;25)
Bo ror S
Non-axisymmetric component of the pressure, pm , should be O(E).
Therefore, introducing Epm instead of P into (3.13) to (3.18)
and dropping small terms, we can obtain the following non-

axisymmetric part of the equations

im Ay 2Wm .26
o U+ ~ o (3.26)
-2V + r Tm = G : & : R SRR (3’27)
20m + 2 p = L f v, (3.28)
YA |

ST ) (3.

— 4hrUn = — A, T (3.30)

ég ) :
C = fuov Tw (3.31)
(m=1,2,---)
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where

»

__'a_ Ay, b

9
=3

3 m

|
Av\'\_-—; (3'32)
.
Eliminating all variables except w
be solved :

yields a basic equation to

D
3
vh’
&

27

h [wanw. —rL., (rW*)] \ (3.33)

which is essentially same as (4.8) in Matsuda, Sakurai and Takeda
(1975) .

3.2

Boundary conditions
The conflgurationlof the cylinder 1is the same as that of
incompressible case, which has the flat top cover at z

the bottom shape given by (2.3)

= HO and
The boundary condition at the top 1is nothing but a

compressible version of the Ekman compatibility condltlon'
(Landahl 1977), and is

w, = - EE——[(whr’)%re%wm] at 7 = H (3.34a)

0 2rEe oF RO "
W, = = [ O e U, ] 7. (3.34b)
; 1re 5L hyr H,

(m=1. 2,

- 20 -
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As the boundary condition at the bottom, we use the Ekman
compatibility condition applied on a slightly inclined surface,

such as the case of the incompressible fluid

L
—32

m

Elamnhhr g (6 ey (3.35)

| Sty =
i’ 2r€, o y
where n* is given by (2.6) and e: is a unit vector perpendicular

to the radial vector and lies on the surface. Substitution of

(2.6) into (3.35) gives

where the bottom condition is applied at z = 0 because of F« 1.

The axisymmetric part of (3.36) is

N

£
W, =
PA NG ar

2 [Geny retv Cat Z-o . (3.37)

and the non-axisymmetric component is

1 F ' ,
Wa = —F [ M Vahw + (M=1) U, Wt ¥ = + Ve 1, ]
(3.38)

(Y154

E

R ‘**Lre%v ' t z= 0
—— —— 0- =
T 2res br{(\fhr) R m} .

The boundary condition for L will be given after the solutions

v - - -,V ,are determined. We need one more boundary

- 21 -
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condition at the top and the bottom, since (3.33) is fourth order

with respect to z. This boundary condition is derived from (3.26

and is

auzm - 0 dz=H, wmd z=0. (3.39)

</
)

| (3.40)

which leads to v,= Tm = 0. Because u is of higher order with

respect to E, the boundary condition for u is ajusted by higher

order boundary layers.

3.3 Solution
‘It is possible to solve (3.33) under the‘boundary conditions
(3.3L4b), (3.38), (3.39), and (3.40). But, since it is very
complicated to solve a general case, let us restrict ourselves
to a simple configuration such as the Pedlosky & Greenspan type
cylinder with a sloping flat bottom. In this case the bottom
geometry is expressed as

_ .6 ,
z = Fre (3.41)

The non-axisymmetric boundary condition (3.38) reduces to

Ni-
<

: X L
E “l(‘fhﬁ>*r‘6§’v.], (3.42)

W= vl P& o

- 22 -
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The axisymmetric part of the solution is easily obtained.
Since W, 1S independent of z from (3.19), we can equate (3.34a)
and (3.37) and obtain

i \ i

B4 [ e neyrtes ] (3.43)
M\C_.Rdr[kl*h\”)\(‘égl‘ | (3.4

W =

And the azimuthal component vO is

v | (3

L
- Assuming E*«F«1, the order of magnitude of‘wl should be

F from (3.42). A careful inspection bf equations from (3.26)

to (3.31) shows that all variables, 'i.e. u , v , w , T , p and
m . m m m m

P_s have the same order of magnitude. Therefore in the lowest

order the boundary condition (3.42) can be written as

W, = FU, = __‘:szY‘ at 2 =0, (3.45)

W, = 0 a&a z-= Hq . (3.’46)

Now the problem is to solve (3.33) under the boundary conditions
(3.39), (3.40), (3.45) and (3.46). If the non-dimensional

parameter h is small, the solution may be expanded in terms of

h

- 23 -
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W)

h}.i - u}_‘to) + h ('\/:-' P . (3,47)

Substitution of (3.47) into (3.33) for m = 1 gives the lowest

order equation

2 ©)
W
AW,

A‘ bzl

o (3.48)

We only show the zeroth order solution here.

’U(d): _2\':_—%\”(0(‘92: — . J-\()\ny.)
T ) [sieh Aalo - Eone (1t osh M, ) |
x L tr ashMbe = @sh M = coshha(z-Ha)] (3.49)
v = 2
Wwr = :.. T 0'
F e (41 Gt )
- —55:\«9{%1’»)1; Ji A 1)

DW 31 ) [ S9N ‘\/\an - ":2-{9>\n {1+ «sh Aa Ho)}

o

x [ @-F90r csh bt ) = stoh Wz = s e (2-H0 ]} (3.50)

where An is the n-th zero of Bessel function Jl'

3.4 Results
The results are explained as follows. In spite of the non-
axisymmetric bottom shape, the axisymmetric geostrophic wind of

the order unity v, can blow. This situation 1s very different

- o4 -
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from the corresponding incompressible case in which no axisymmetric
fﬁind is induced in the lowest order. In the case of compressible
fluid, particles of fluid can hardly move in the radial direction
 becauSe of a stable Stratification along a radial coordinate ,

’and therefore the 0(1l) azimuthal velocity isvpermitted.

’ The geostrophic wind should flow along the bottomAslope s

and for this reason a z-motion w. of O(F) is induced. In the

1
figure 8 this streamlines on the surface whose radial coordihate
1§lconstant (r = O.S) is shown for Hy = 10 ; The O(F) flow
produced by the sloping bottom affects the flbw field in the
inner core via a viscous effect, and the azimuthal flow of O(F)
is induced.

The conclusion drawn from these considerations is thét £he
inner azimuthal flow is not affectéd in the lowest order by the

geometry of the top/bottom if F<«1 , while the flow along the

L
cylinder axis is perturbed if F>>E?

b, Conclusions

In the case of the incompressible fluid, flows arebessentially
two-dimensional even under non-axisymmetric circumstances such
as in the present paper, because veloCity components are

independent of the axial coordinate due to the Taylor-Proudman

theorem. So the bottom shape has a great influence on the flow
pattern and magnitude. On the other hand the compressible fluid
may have three-dimensional flow. In the rapidly rotating gas,

the gas particles can hardly move in the radial direction because

of the stable stratification, and the radial velocity is only of

- 25 -
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O(E) . In this situation the 0(1l) azimuthal flow is allowed
and the effect of a bottom shape on the flow is small in the
case of F<1.

Let's compare the fluid motion in the incompressible fluid

with the compressible one in the case of the Pedlosky & Greenspan

problem. Westward intensification 1s observed in the
incompressible fluid. The flow in the inner core is weak and
of the order of e . On the other hand compressible fluid has

an azimuthal flow of 0(1l) and has a weak three-dimensional axial
motion due to the bottom shape. Moreover, in the lowest order
these flows are confined to the surfaces whose radial coordinates

are constant.

The authers wish to thank Dr. I. Hachisu for . -- helpful
discussions. The numerical calculations were performed on the

FACOM M-200 at the Data Processing Center of Tyoto University.
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Figure caption
Figure 1. Configurations of (a) the cylinder with the off-axial
paraboroidal bottom and (b) the cylinder with the sloping
flat bottom.
Figure 2. Pressure isolines or streamlines of the steady driven
flow of an incompressible fluid in the rotating cylinder
whose bottom 1s the off-axial paraboroid ; b = 1.5 and

€ = 0.01, the thick line shows a numerical solution and the

thin one an analytic solution. Poin = -0.0282.
Figure 3. Pressure isolines ; b = 0.05 and € = 0.01 .
Poin = -0.498.

Figure 4. Pressure isolines ; D 0.5 and € = 0.01

Poin = -0.196.

Figure 5. Pressure isolines ; b = 0.7 and € = 0.01
Poin = -0.102.

Figure 6. - Pressure isolines ; b = 0.9 and € = 0.01
Ppin = -0.0578.

Figure 7. Locus of the point of the minimum pressure with
changing b.

Figure 8. Streamlines of the compressible fluid in the constant
r section (r = 0.5). The flow of O(F) is induced by the sloping

flat bottom.
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Figure 5.
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Figure 7.
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