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Numerical Analysis of Viscous Vortex Motion
by
U MYA 00 (V- 3y 7-)
Department of Applied Science, Faculty of Engineering,

Kyushu University, Hakozaki, Fukuoka 812

Head-on collision of two co-axial viscous vortex rings is
simulated by numerical integration of the Navier—Stokes equations
for viscous incompressible fluid. Numerical results are employed
to observe the behaviors of the time dependent flow quantitiesv
and confirm the importance of viscosity. Sudden decrease of the
total energy and circulation subsequent to the period of their -
conservation, is observed to be similar to the phenomenon ofvthe

energy catastrophe studied in the turbulence theory. .

1. Introduction

1,2)

Recent experimental and theorerical investigation upon
acoustic wave generated by head-on collision of two vortex rings
has stressed importance of viscosity as a dominant factor in
determining the form of the acoustic signal emitted by the vortex
motion. The results of their work also indicate the need to
study the viscous motion of high Reynolds number.

In the inviscid fluid the head-on collision of two co-axial

vortex rings possessing the same strength and the same size 1is
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considered to be equivalent to the motion of one ring approaching
a plane perpendicular to its axis. In this case the image inside
the wall acts as the other ring.

However because of the symmetry of the ﬁortex configuration,
similar application can be made to the motion of viscous fluid.
The principal difference from the inviscid case is that the total
kinetic energy and the vortex strength are no longer conserved
during the motion, due to the viscous diffusion of vorticity.

Thus the aim of the present study is to determine the
behavior of time dependent flow quantities at high Reynolds num-
bers, by applying the Navier-Stokes equation to the motion of a
viscous incompressible fluid. The Navier-Stokes equation and
the continuity equation are transformed into the equations of
vorticity and stream function. They are then solved‘by means of
finite difference approximations for appropriate boundary con-
ditions and given initial vorticity distributions. The numerical
method used here is expected to give accurate results only for
low and medium Reynolds numbers. However it is hoped that
through these analyse€s one can get an idea about the behavior of
viscous vortex motion at higher Reynolds numbers.

Recently collision of a sinéle vortex ring with a solid
wall was investigated experimentally by Yamada et al.3), finding
generation of a secondary vortex ring at the wall in addition to
the main vortex. In comparison with the present study where
stress-free‘condition is applied at the plane boundary, viscosity
effect is enhanced in their experiment by the presence of the

rigid wall where no-slip condition is imposed.
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2. Mathematical formulation
2.1 Governing equations

We consider an axisymmetric flow without swirl of an incom-
pressible viscous flow in cylindrical polér co—ordinates(x,gﬁ(?)
with the axis x coincident with the symmetry axis of the vortex.
In view of the property that all the flow Quantities are
independent of the azimuthal angle ¢, we have the velocity com-
ponents ( u(x,), v(x,¢q),0 ) and the vorticity ( 0, 0, c(x%x,0) ).
The governing equations of the unsteady incompressible viscous
flow are the Navier—Stokes equation for the vorticity and the

continuity equation :

g_fz‘_’ + u%ﬁ; + cf%_o.ai :V('%QJ1+§1"1+O£5%,_%1)) (2.1)

35.2 ; g.iof - o, (2.2)
together with the relations

w = é; %%i , U-:_.é;égi , (2.3)

w = 9 g_; , (2.4

where 7u is the Stokes stream function, )/ the kinematic viscosity
and t the time.

To obtain the equivalent system of equations to be approxi-
mated by the finite difference equations, we transform the above

eqg.(2.1), using eq.(2.2), into the following conservation form:

1
Dw Quw  QJuw _ dew , 0w 4 ow w 2.5
r + Y ( Da*t D6t +G‘ba* fi)/ ( )

in anticipation of the fact that the equation of motion in the
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form of conservation law is more effective for convergence of
the numerical iterations.
Using the eq.(2.3), the expression (2.4) can be transformed
into the relation |
Qi"—w +a—1ﬂ’ _L2Y e . (2.6) -
%t 24"t @« 26
Let us take the radius a of the vortex ring at an initial
position as the reference length and a magnitude of vorticity
in the vortex core as the reference vorticity and define
*

* * * *
a x , 0= a g, a)=-fk ¢« , u=aflu ,v=adlv,

-1 ox 3 *
-rz)t ’ {yj: a,r)b(YJ
With these substitutions, egqs. (2.3), (2.5) and (2.6)retain

1

X

t

the same form (for convenience the asterisk can be dropped )
except all quantities are dimensionless and )Y is replaced by

1/Re, where Re is the Reynolds number defined as Re = azl% lyp -

2.2 Initial and boundary conditions

The plane wall against which the vortex collides is taken
at x = 0. In view of the axisymmetric nature of the problem,
we consider the vortex motion in the region (0{x <oo, 00 <0 ) |

The initial state of the vortex ring is assumed to have a
compact vortex core, that is, the vorticity at t =0 takes a
non-zero value C ( with dimensional value C £} ) only in a
compact domain D of the x-§ plane :

c , inside D,

w | = (2.7)
o , outside D . ~
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A circular form is assumed for D: {(x,@)/ hx -X )2+(G’—1)2f2@.3},
where Xa(>0) is the initial mean axial position of the vortex
and the core radius is taken as 0.3 . The initial value of
vorticity C =-2.0 is used throughout D, where the minus sign
means’that the vortex motion is to the wall at x = 0.

In order to improve the final results obtained from the
computation, we employed another initial condition derived from
the above condition, in which D is not necessarily circular and
C is not constant.

The boundary condition on the symmetry axis d =0 is that
v = 0 and Ju/of= 0 hold by the symmetry of the velocity field .
The conditions at the wall are u = 0 and 9v/@x = 0. Those
conditions are transformed into the conditions

Y=0and W=0on G=0and x = 0 , (2.8)

which manifest that the boundaries ¢ = 0 and x 0 are coinci-

1

dent with a streamline and viscous stress vanishes there.
For the conditions at infinity we take

w=0and @ =0 , L (2.9)

since the velocity field induced by vortex rings is irrotational
and decays as O{ r_3) where r = x2+ 0“2 .

2.3 + The analytical expressions
For later use, it is desirable to get definitions of some
flow quantities as follows.

The circulation of the system can be defined as

[ = fng'd%a/d’ | ,‘ | (2.10)
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where A denote the domain considered on the axial plane (x,g").
The coordinates of thé center of vortex core can be defined by

the expressions ;

fj;’ coxdodd G" fj;qw Adocd T ) (2.11)
r | "

The total kinetic energy E of the system and its time

>

derivatives can be expressed as follows ;

[f 12+ a7 gdnda

= 7 ffﬂ copdadi, (2.12)
de - — 20 (( G odxds |
Te - < 2.13
s Re //ﬂ ’ (2.13)
d'E Joc di s 2 2
=~_, % G+ 2 W) LB (@ (2.14)
L f]'uz oo [f{(ay)+ Ly« ]f dxd .
3. Finite difference equations

To solve the time dependent problem corresponding to the
required physical situation, we use the finite difference equa-
tions approximating the egs.(2.3), (2.5) and (2.6) ( in dimen-
sionless form) . To construct the finite difference equations
we divide the region of consideration in the x~ 4§ plane into
rectangular meshes whoses intervals are taken as h and k in the
X and directions respectively. The numbers of the mesh points -
in the corresponding directions are denoted by I and J respec-—
tively. The network of mesh points is shown in‘Fig.1. Here we

consider the finite region OABC with such an extent that the

boundary condition (2.9) at infinity is replaced with the suffi-

ey



173

cient accuracy by ¢ = 0 and «w= 0 on the two sides AB and BC in
Fig.1 . Therefore the two conditions (2.8) and (2.9) reduce to
the boundary conditions :
qﬂ = 0 and ¢J = 0 on all the boundaries OA, AB,
BC and CO , (3.1)
for the computation of the finite difference equations.
Time step is taken as ‘¢ and the values of VYo oew 8 and v
at the point (ih, jk) and at the time t= n7T are denoted by
[ﬂf, gg?, z;; and %T/respectively, where A4 and j are
7] 49 ) ¥
integers.
Using the above notations and substitutingAthe forward
difference formula for time derivative and the central difference

formulae for space derivatives into the egs. (2.5) and (2.6),

we obtain the following finite difference equations:

il “
Wy ;- G (ZACan _.(14¢u} + h/tv) -/crou) ¢ g tla = 2t
T AT I Dby 37 i ? M7 R R T A D ik Y
T 2 h 2k ke h*
e v 4_,) Psd an
N - I Wy - - . -
t Yl aﬁ‘ i 2R ""GZ it Ll w"jd - f
it 2k 2
M o
- ,,L (w) + L (w) (3.2)
- P 2x J
L ‘ ] ’
o ) _—@AC‘-)} 1 . w
(w)= o f@e) ) ‘e {%W L2 Wy if o, (3.3)
2h ‘
s s 5 5 3 s
b teo) = § Chjn G pow L S G hja Mgy
4 T
2k ‘ 2
, 5 5 P
is W T Mg Way ] , (3.4)
T T e
S =z
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" m . e

& o A Bt M M
Vi jt Yar, i 2 Yo b Yija! Mogir 2 VYij_ 1 Yoin~ Vg
% fe* T 2k
= - 6"(,4.7;‘“/. . (3'5)

2J
For eq.(2.3) finite difference approximations can be made as
follows. Let us denote the values of a function f(x) and its
derivatives at x = ih by é;, é:, {;' and so on. Then, using
Tgylor series expansions of [, ’ é”’, é;/ and {é/ , we can

At

write .
/ /

Lo #4 ba v by = 3 Cho b)) # OCRD,
which is in tridiagonal form and gives the first derivatives of
éﬁ in terms of gé to the accuracy of fourth order of h.
Employing the above formula to the calculation of‘the velo-
city components u, . and Y&j from eq.(2.3), we obtainlthe finite

",

difference equations

(o U) Yy (W) o+ (TU) =

: , (Y - Y 3.6)
EN i ~gH i %) (

~ijw
R
[
\
~
pY

7~ . a8 U i - ,..9 — .
(cr‘c)ﬂv,,l.j'f Yy(svl) ¥ c,ru)mj = ~Z (., - (3.7)

45
To solve the difference equation (3.2), we apply the method
based on that devised by Peéceman & RaChford4) for diffusion
problems, known as ADI ( Alternating Direction Implicit ) methqd.
Thus each time step , nT to (n+1)7 , is divided into two
successive half steps, n7 to (n+1/2)7 and (n+1/2)7T to (n+1)T,

and hence eq. (3.2) becomes
.'y\.f{ A {V‘vf’?_l

"M .
‘ = Locwr v Loy, (3.8)

;LL_:_:Ef e x

Tya
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ans antd Mgl .fvw.zl'

W;~—WA’; . ’ ‘
<2 ) = Lr(w) + oé‘ (Cu) g (3.9)

8%
~ Mt/ :-n;-il
where ;;{au, é; ( w) and l; (v ) are as defined in

egs. (3.3) and (3.4) .

Since egs. (3.6)-(3.9) are the systems of equations in
tridiagonal forms, we can apply Gauss selimination method to
solve egs.(3.6) and (3.7) for gﬁand %jfrom known values of q%j,

+d »“of )

eq.(3.8) for adj” and eq. (3.9) for s .

To solve eq.(3.5), we use SOR ( Successive Over—-Relaxation)

method after modifying the equation as

s+ 5 Y

s+ s & s S
%;j =(1-o) (4770 SR { (WAH,L+ 'rwv"—,j + Y ge1 + Yo
Aakh Ky 2 " | |
P Y " ~ (3.10)
- L TG - Vg .. o 1
' : + g C‘&JJ f " )

1k

where & is the parameter known as the relaxation factor and the
index $ indicates the number of the iteration times. 1In thié
formula the latest possible values of q%j are substituted‘in the
right hand side for the rapid rate of convergence of the itera-

tions and the optimum value of of has been chosen based on the

e _ _

formulae o« = SZHI"F  ang B = Cnll + @Z 3) gng
pl T T

some trial test. Here I and J are the numbers of mesh points as

stated above.

4. -Computational procedure
4.1 1Initial condition

'Initially all dependent variables were set to zero except
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the vorticity for which we assigned (« = -2 for the points which

lie : 2 - .27 L
ie in the core {(x,ﬁ): ((X—& ) (¢-1)°7) <§ 0.3} and u%j, 0

for the remaining points. Here (X, ,1) and 0.3 are the initial
coordinates of the core center and the core radius respectively.

Next, using the assigned values of (%3and qgj we improved

J

the values of qz,by eq.(3.10). The iteration was continued until
/‘LJJ .
k Ferl
the two successive values of ¢} . and sx%* had met the convergence
ke f e ) "
condition {ﬂﬂj.»fwn} </oﬂ( at k=K) . Taking the given values
Y Y4

of aéjand the converged values‘of q&j as tbe initial values we
proceeded to the next time t =¢,2%,37, ... . The procedure
from the time t = n 7 to the next time t = (n+1)7Z is described

in the next sub-section 4.2 .

Up to here we have assumed that the initial shape of vortex
core is exactly circle and approximated the initial vorticity
distribution by giving uniform values fbr mesh points which lie
in the circle and zero for outside points. However the actual
shape of the vortex core may be not necessarily circle and
vorticity distribution in the core may not be exactly uniform.
For this reason we devised the way to get the better approxi-
mation of the initial shape of vortex core and the vorticity
distribution in it. We recorded the vorticity distribution at
an appropriaté time after proceeding the above computation with
the previous initial conditions, and the equi-vorticity lines
for that time were plotted.

From this procedure we obtained the more'suitable set of
vorticity distribution which would give a reasonable shape of

vortex core and the vorticity distribution in the core region

_10_
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in the state of translational motion. Thus we assigned the new
initial vorticity distribution by constructing the vortex core
which has the same shape and the same vorticity distribution in
it as those of the core of vortex given by the recorded data.
The size of the core was also chosen by specifying a minimum

value of the vorticity below which the value of ¢ was set equal
i

to zero, The center of the core was made to coincide with the
position of the previous initial core center. The other depen-
dent variables are all set to zero for all points as in the pre-
vious initial conditions. From those values, the values of ;ng
were modified by the eq. (3.10) and the same procédure continued

as stated previously.

4.2 The steps required to proceed from time n Tto time (n+1)7T

Let us suppose that the values of w., . ., 2. and &, are
43 oy 41 4 ]
known up to the time n7 , where those of z{fand .. are determined
)

AJJ

: ) EQ% ol

from the relations (3.6) and (3.7), then the values of “&{lﬂﬂn ’

) Jj
Tt gl ) .
‘j and cgj for the next time (n+1)‘T can be calculated as

follows.
ol L

1. Using the formula n%~ = Qé-+(’¢%r4£%b , We approximate the
oy 'y Y BT

2~
1 f .
values o '725 5 >
2. Then the wvalues of 1§j and q; can be calculated by using

egs. (3.6) and (3.7) .

3. Systems of equations, egs.(3.8) and (3.9), are solved to get

mad oy
&*jland w.. by using ADI method.
v ] 27

o)

4. Next, using the up-to-date values of 04j we solve eq.(3.10)

. ' . . mpl
to get the corrected values of . by SOR method. The iteration
AJj

-11-
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s+
was continued until the two successive values of y} and (yrj

SHI
satisfy the condition 1“ < ”3 where Y, denotes the

reference value of Yoo taken as the maximum value of «py at t=0
4 7]
in this case.

ntl

5. Using the latest revised values of q&, we repeat step 2 to step 4
bl S
again and again until the values of aéjno longer change. The
convergency of the whole iteration process was tested by the
wil kHi a1 K

condition k 1) - kﬁowhere k and k +1 denote the numbers of
the successive iterations.
6. When the convergence condition in the step 5 is satisfied the

mas) et Ml o+
latest values of -, and au.,  together with n, and .. are

ﬁla .,;,,.9 )j ‘)ﬂ
taken as the values for the time (n+1)% . Thus one time step
is completed and we can proceed to the next time step in the same

way.

5. Results and discussion

Computations were carried out by taking the grid points of
136x121 and the size of the space step 1/15 for both x and "
directions. It was found that e further increment in the size
of the region did not produce any noticeable changes of the
results. It therefore confirms the chosen size of the region is
sufficiently large to approximate the infinite region of the
required flow field. |

The error bounds for the values of,rgkéand aﬁ,are that a
further reduction of them brought no impro;emeht of the accuracy

of the solutions, at least for four significant figures. The

accuracy of the procedure is a.lsO checked by using the analytical

-12-
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expressions (2.12)-(2.14) for E, dE/dt, dzE/dt2 as shown in
Table(1).

Figures 2(a) to 2(d) show the equi-vorticity lines and
streamlines at t = 0, 39.8, 49,8 and 59.8 for Re = 500,1000,2500
and 5000, | Figure 3 shows the paths of the centroid of vorticity
Vdefined in eq.(2.11), where the ordinate gives the radius of the
vortex ring at the corresponding position. It can be seen from
the figure that the radius of the vortex remains almost constant
till the vortex reaches at a distance‘of the order of its core
radius from the wall and after that it increases rapidly.

Figure 4 represents the variation of the circulation defined
in eq.(2.10), and fig,5 the variation of energy of the system
defined by eq.(2.12), both plotted against the dimensionless time
t < for Re =500,2500 and 5000. Comparing with the curves of the
vortex path, it is found that as the Reynolds number increases
from 500. to 5000, the energy and the circulation curves tend to
be flat for the vortex positions away from the wall, and decrease
after the vortex has reached very near to the wall. This indicates
that the effect of viscosity becomes dominant as the vortex comes
close to the wall at distances of the order radius of the core.

It appears that, as the Reynolds number is increased indefinitely,
the circulation and the energy of the system tend to be conserved
in an initial period and then suddenly damped by the viscous
action when the vortex comes‘near the wall. This sort of beha-
vior of total energy; that is, initial conservétion and subse-
quents sddéen increése, is called as energy catastrophe in the

theory of homogeneous turbulence by Andre and LesieurG).

-13-



180

In Fig.6 , the distribution of vorticity across the diameter
parallel to the symmetry axis is plotted for t =49.8 and 59.8 for
Re =2500.. From the figure it can be seen that the vorticity
distributions compare fairly well with the Gaussian distribution.
Figure 7 shows the variations of maximum vorticity with time t
and it can be seen that near t =50 the maximum vorticity increases
abruptly and subsequently decreases. This increase is probably
due to the stretching of vortex when it collides against the wall,
and the subsequent decrease is due to viscous dissipation. Con-
sidering the fact that this case of a single vortex colliding
against the wall is equivalent to that of head-on collision of
two vortices, the viscous decay of the total circulation of the
single vortex implies pair annihilafion of positive and negative

vorticities.

6. Conclusion

Although the Reynolds numbers used in the present study were
not strictly comparable to that of ref.1 and 2), it can be said
that our results confirm the important role played by viscosity
when the cores of two vortex rings come into collision. There-
fore this analysis suggests that the acoustic emission studied in
ref.2) must’have been affected largely by the action of viscosity.

It is interesting to note that the viscous decay of the total
circulation of the single vortex is interpreted as pair annihila-
tion of the vorticities of opposite senses, and that the sudden
decrease of the energy and circulation is subsequent to the period
of their conservation is observed to be similar to the phenomenon

of the ‘energy catastrophe studied in the turbulence theory.

-14-
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NG ( 500 1000 2500 5000

1.074 -3 5 -4 T2, -4

jo. | NE|71-074 x 1072-0.875 x 107 7:5.420 x 107 %2.670 x 10
| aE -1.074 x 10 7|-8.875 x 10 %_5.388 x 107 %.2.689 x 1074
NE  |-5-490 x 107%-5.335 x 107%-3.950 x 107%-2.235 x 1074
301 £ |-5.481 x 1079-5.323 x 10743928 x 107 %-2.221 x 1074
NE  |-3-555 x 107%-4.305 x 107 %-5.410 x 107%-3.265 x 1074
50. | ap |-3-555 x 10" %-4.220 x 107 4.870 x 107%2.671 x 107
NEE 4.635 x 10 7 2.790 x 10 2| 1.040 x 10 7| 4.208 x 10 °
10. | app | 4-480 x 1077} 2.646 x 107> 0.942 x 1077 3:979 x 107°
NEE | 1-465 x 1077 1.093 x 107> 4.908 x 1079 2.043 x 1076
30. | app | 1-423 x 1077 1.038 x 1077 4.526 x 107% 1.875 x 107
NeE | 5-208 x 1079.4.370 x 107%3.980 x 107°1.952 x 107°
50. | app | 5.017 x 107 % 4.652 x 107%4.077 x 107°.2.004 x 107°

NE =Numerically obtained valuve of dE/d4dt
AE =Analytically obtained value of dE/dt

NEE =Numerically obtained value of dzE/dt2
AEE =Analytically obtained value of dzE/dt2

Table 1 .
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6.0 ] Fig.3 Paths of centroid of vorticity
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- ---=-~-- Gaussian distribution

——+——— Vorticity distribution
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Fig.6 Vorticity distribution (normalized by the

maximum value ), ) along the core axis parallel

to the symmetric axis X .
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Fig.7 Maximum vorticity, normalized by

the value at t = 0 .
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