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On topological Blaschke conjecture I

Cohomological complex projective spaces

FIOKFE M R B

(Hajime SATO)

By a Blaschke manifold, we mean a Riemannian manifold
(M,g) such that ,for any point mé¢M , the tangential cut
locus C, of m in T M is isometric to the sphere of
constant radius. There are some equivalent definitions
(see Besse[2, 5.43]). The Blaschke conjecture is that any
Blaschke manifold is isometric to a compact rank one symmetric
space. If the integral cohomology ring of M is equal to
the sphere Sk , or the real projective space RPk , this
conjecture is proved by Berger with other mathematiciens [2,
Appendix D]). We consider the case where the cohomology
ring of M is equal to thaf of the complex projec?ive space

CPk .

We obtain the following theorem.

Theorem. Let (M,g) be a 2k-dimensional Blaschke
manifold such that the integral'cohomology ring is equal
to that of cp® . Then M 1is PL-homeomorphic to cp®

for any k .

Blaschke manifolds with other cohomology rings will

be treated in subsequent papers.
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If (M,g) 1is a Blaschke manifold and me¢M ,
Allamigeon [1] has shown that the cut locus C(m) of m
in M is the base manifold of a fibration of the tangential
cut locus Cm by great spheres. We study the base manifold
of such fibration by great circles. We apply the Browder-
Novikov-Sullivan's theory in the classification of homotopy
equivalent manifolds (see Walll4]). Calculation of normal
invariants gives our theorem. In Appendix, we give examples
of non-trivial fibrations of S3 by great circles. The
author thanks to M.Mizutani and K.Masuda for the discussion
of results in Appendix.

Detailed proof will appear elsewhere.
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§1. Projectable bundies

In the paper [ 3], we have obtained a method of a
caloulation of the tangent bundle of the base space of an
Sl-principal bundle. We will briefly recall that.

Let X be a smooth manifold and let 7 : L- --»X be

the projection of an Sl—principal bundle.

Definition. A vector bundle p : E—>L over L is
projectable onto X , if there exists a vector bundle
p : E—>X over X such that m*E = E . The map

induces the bundle map w, : E —> E , which we call the

projection. The bundle E is called the projected bundle.

Let x be a point in X . For any a ,b‘é ﬂhl(X) - st ,
we have a linear isomorphism
-1 : -1
¢p : P (@) ——p " (b)
of vector spaces defined by - @ab(u) = v , where ﬂ!(u) = ﬂ!(V).

Then we have, for a, b, c T (x) ,

1 =
(1) @bc @ab e )

Let 71*L = {(a,b)€ LxL, w(a) = 1(b)} be the induced

Sl-bundle over L from L . We have two projections Ty

Ty + T¥L— L defined by ﬂl(a,b) = a and ﬂz(a,b) = b
let ni*E (i = 1,2) be the induced vector bundle. The map
® : 7*L —> Iso(nl*E, nz*E) defined by ¢(a,b) = Qab is
a continuous cross section of the bundle Iso(wl*E, WZ*E)

over T*L .
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We call ®» the projecting isomorphism associated

with the projectable bundle E .

Proposition 1. Suppose given a vector bundle E

over L and a cross section ® of the bundle
ISO(Wl*E,ﬂz*E) satisfying (1) . Then we have a vector
bundle £ over X such that W*ﬁ = E and the projecting

isomorphism is equal to ¢ .

Now let TL and TX be the tangent bundles of L

and X respectively. Let 4 : S1 »x L —> L be the free

1

Sl—action. For each te€S™ , the diffeomorphism [ (t)

= p(t, «) induces a budle isomorphism ,(t), : TL —> TL .
Proposition 2. The collection kJ} o (t) 4 induces
t:eSl
a projecting isomorphism on the bundle TL such that the

projected bundle TL is isomorphic to TX & 1 .

Proof. Choose a bundle metric on TL . Let TLl be

the subnundle of TIL consisting of tangent vectors normal

to the Sl— action. Then TL is projected to TX . The

1
line bundle tangent to the Sl—action is projected to the

trivial line bundle on X .
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§2.  Pontrjagin classes
Let SZk'_l be the unit sphere in Iizk and let 7 :
s?*=1___ . B be a fibration of s2F71 by great circles.
Thus, for each b¢B , m1(b) is the intersection of
SZk—l withma 2-plane in ZRZk. We write the 2-plane by
P(b) . Let p : stxs®® 15 g2%°1 genote the free si-

action.

Let V(2k,2) and G(2k,2) , fespectively, be the
Stiefel ahd the Grassmann manifold consisting of orthogonal
2 frames or oriented 2-planes in 122k . Then the natural
mapping A s V(2k,2) —— G(2k,2) defines a principal
Sl—bundle.

The mapping © : B ——> G(2k,2) defined by 6 (b) =
P(b)A is a smooth embedding. Let ©0*( A ) denote the induced
bundle of A by 6 . Since 71w is a1so the induced bundle
of'K by 6 , there exists a natural bundle isomorphism
between 7 and 6*( A ) inducing the identity on B . Thus
we obtain;

Lemma 3. We may suppose that the free Sl-action p on
g2kl g equal to the restriction on m"1(b) of the linear
action on P(b) for every b€B .

In the following, we always assume that p  1is the

linear action on each fibre. For each xc—SZk_l , let KX

S2k—l

denote the point p(1/4)x in , where we identify
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st with [0,11/ [0] ~[1] . Define a mapping g .

2k-1

S > V(2k,2) by B(x) = (x, Kx) . This is a

smooth embedding and is a bundle map inducing 6 on the
base manifolds. For an orthogonal 2-frame w = (xX,y) ,

let J(w) denote the vector (x/Y2 , y/¥Y2 ) in

]RZk(-E) IR2k . Then the map ¥ : v(2k,2) — IR4k is

S4k—l — 4k

a smooth embedding of v(2k,2) in R . We

identify IR2k ® IRZk with (]:2k such that the first summand
IIR2k is the real part and the second pure imaginary. On
(EZk - 0 , we have the free action of S:L as the multi-

o
plication by the complex number of norm one. Then 7 is

Sl - equivalent and we write by Y the induced map [V

G(2k,2) —— ep2k7L '

“Let T : Szk—l_——;; s¥ 1 pe the composition I = 8
and f = Y6 : B —w Cf.‘?‘k_l . The map f is given by
F(x) = ( x/V/2 , kKx/¥Y2 ) for x¢€ g2k-1

We define a map F o: IR2k -0 — (I!Zk - 0 by
F(tx) = tf(x) for t>0 and xeSZk-l .  The map };‘ is
a smooth embedding . Let E denote the restriction of the
tangent bundle T( r %K - 0) of rR3¥ - 0 on ¢! , and

we write p for the projection E————?SZkfl . Then F

~

induces an injective bundle map F, : E —— f‘*(E) '

2k N _
T( T - 0)] 5 g2k L .
Now define a map G : IRZk -0 —> E?“k - 0 by

G(tx) = ( tx/¥2 , -tkKW¥/2 ) for t >0 and x ¢ g2k71

« 6 =
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Then G is also an embedding and G induces an injective

bundle map
: .. 2k-
Gyt B @t e* 0 20 % (52k-1,
- . 1 2k
If o denote the conjugate action of S on (C -0 .

Then G is éi—equivariant concerning to this conjugate
action.

For any ye.mzk , we naturally identify the tangent
2k 2k 2k-1

space Tym with € itself. For x¢&S , let Ex
denote the fiber p—l(x) . Then ?*(Ex) and @*(Ex) are
subvector spaces of Ezk .

Since K : SZk-l———7-82k—l is a diffeomorphism, we

obtainj;

Lemma 4. The vector spaces ﬁ*(Ex) and é*(EX) are

transversal. Thus they span ¢2k .

Let T denote the restriction of the tangent bundle

k 2k-1

T(CD2 ) on f(S ) . Then we have the direct sum decom-

position by trivial vector bundles

T = F,(BE) @G, (E) .

Notice that &,(E) on &(s2¥™!) is identified with the

subbundle in T over %(Szk_l) by an orientation reversing

diffeomorphism of SZR“l .

For any t¢ Sl , we have the induced bundle isomorphisms

px(t) : E—>E and pgult) : T—> T .

-7 =
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Lemma 5, The isomorphism po*(t) is equal to the

direct sum

p*(t) + p*(t) .

By Proposition 1, we obtain » . .
that the projected bundle T , defined by the project-

ing isomorphism pe(t) , is isomorphic to the Whitney sum;

A A A

T E & E .

by Pro it i . }
On the other hand, y‘. pos{t%%?c&kaln the following.

Lemma 6. The bundle T has the complex structure. As
a complex vector bundle , T is isomorphic to the Whitney

sum  T( EPZk_l)|f(B) @ 1.

Lemma 7. As a real vector bundle, E is isomorphic to

the bundle T(B) ® 2 .

Consequently, we obtain that

~ 2k-1
T(B) ®T(B) & 4 = (T g @ g |

Since the cohomology groups H*(B;Z) ‘has no torsion
element, by the product formulaof Pontrjagin classes, we

obtain the following .

Proposition 8. The Pontrjagin classes of the smooth manifold

B is equal to that of cpX™1 , for any k .
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§3. Zz—invariants and proof of Theorem

k-1

Let )3(CP ) denote the set of PL~homeomorphism

classes of closed PL-manifolds homotopy equivalent to

cp¥ 1L The following results are due to Sullivan (cf.

[4, §814C1]) .
- Suppose that k>3 .

Proposition 9. 'For any Ne xg(CPk—l) , there are
invariants S4i+2(N) < Z2 and s4j(N) ¢ 72 , for
all integers i,j satisfying 6 < 4i+2 < 2(k-1) ,
4 £ 43 < 2(k-1) . The invariants define a bijection of

}3(CPk_l) with
| (® 2,) ®(®z)
i ’ j .
The invariants s4j satisfy the following relations.

Proposition 10. If all the Pontrjagin classes of

k-1 k-1

N in Aﬁ(CP ) coincide with that of CP ; then

s4j(N) = 0 for all 3 .

Concerning Z2—1nvar1ants Sgisn 7 the following

holds. Let )3(RP2k_l) denote the set of PL-homeomorphism

classes of closed PL-manifolds homotopy equivalent to

Rsz-l . This set is known to be equal to the isomorphism

classes of homotopy triangulations of RPZk-1 . Any N

€ XX(CPk-l) is the base manifold of a PL free S.-action

on SZk-'1 . By restricting the action to 22 = 80<: Sl ;
RPZk—l

we obtain a manifold homotopy equivalent to
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This defines a map

e SRy s Swe?Rly |
The following holds ([4, §14D.3]).

Proposition 11. Let N be an element in xg(CPk—l)

RPZk—l

such that ﬂb(N) is PL~-homeomorphic to . Then

Spi4p(N) =0,

for all 1 .

1

Now let Bé-xg(CPk_ ) be the base manifold of the

fibration of Szk-1 by great circles. Then, obviously,

the image ﬂb(B)e‘ﬁg(RPZk_l) is PL-homeomorphic to

gp 2k-1

Combining the result of §2 with Propositions, we

obtain :

Proposition 12. The base manifold B of a fibration

SZk—l CPk—l

of by great circles is PL-=homeomorphic to

if k £ 3 .

Now let us prove Theorem. Since the integral

cohomology ring of M is equal . to that of CPk , M is

simply connected ([2, 7.23]). Thus M is homotopy

equivalent to CPk . By Allamigeon's theorem, we know

that M is PL-homeomorphic to the union of the disc D2k

with the D2—bundle associated with the fibration of Szk—l
by greét circles. We write B. for the base manifold of

the fibration. If k = 3, by Proposition 9, M is

- 10 -
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PL-homeomorphic to CP3 if and only if 54(M) =0 .

The invariant s4(M) is calculated from the first

Pontrjagin class pl(B) of B . By Proposition 8 of 52,

pl(B) is equal to pl(CPz) .  Thus we have s4(M) =0
and M is PL~homeomorphic to CP3 . Now suppose that
k # 3 . According to Proposition 12, B is PL-

CPk—l

homeomorphic to . The Euler class of the Sl—i

k-1

bundle is equal to a generator of HZ(CP ;2) = Z . Thus

the total space of the Dz—bundle is PL-homeomorphic to

the tubular neighborhood of CPk'_1 in CPk . Any orientation

preserving PL-homeomorphism of g2k-1

is isotopic to
the identity. The attached manifold M is PL-homeomorphic

to CPk, which completes the proof of Theorem.

- 11 -
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§4. Appendix

If 7 = Szk'l-_—_? B is a fibration by great circles,

we get the embedding 8 :+ B—> G(2k,2) . Since the
planes g(b) for all be&eB give a foliation of Szk_l,

we have the following property.

(*) For two different points b and b’ in B , the
planes g(b) and g(b’) are transverse.
The converse holds.

Lemma 13. Let g : SZk_l-~<7B be a principal Sl—

bundle induced from the S -bundle 3 : W(2k,2) —> G(2k,2)
by a smooth embedding ¢ : B-———;G(Zk,Z) . Suppose that,

for any different points b and b’ in B., the planes

g(b) and o(b’') are transversal. Then the bundle T is
a fibration of s2k71 by great circles.
! -
Proof. Consider the union KJ’( o (b) [\Szk 1 Y .
b
Then it covers 2% 1 and give a fibration by great circles.
Now we consider the case where k = 2 . For the fol-

lowing discussion, see [ 2 , p.55] . Let AZH{4 denote
the space of skew-symmetric 2-tensors. The Grassmann

manifold G(4,2) is naturally identified with the set of

decomposable elements of norm one in A2124 . We have the
Hodge operator * from A2124 onto itself. The space
A2124 is decomposed to two orthogonal subsets El and
E_ 4 associated to the eigenvalue 1 and -1 of * .

- 12 -
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let 2. and 32 be the sphere in E. and E of
1 -1 1 -1
radius 1//2 . Then G(4,2) is equal to the product
82l X Sz__l . Define a bilenear map ¢ : A2114 X A2E§4
—> R by ¢(a,b) = || a,b || » where || || is the

4

norm on AZIQ = IR . Two planes P and P, in G(4,2)

1

are transversal if and only if C(Pl, P2) = 0 . Represent

Pl and P2 by (xl, x2) and (yl, yz) , where Xy 1Yy

& 82l and Xy 1 Yy & 82__l . Then we have

(:(Plr P2) = <Xl ’ Yl> - <X2 ’ Y2> ’

where <\ > is the inner product of the vector space El

or E .

For a smooth map 6: Sz——~—7 G(4,2) , we define a

smooth function 2Z(86) on 52 by z2(0)(x) = ¢( S(XS, 8(x")),

by fixing x’ in 52 . Thus the principal Sl—bundle m

S3 —_— 82 induced by an embedding 6 : SZ-———% G(4,2)

is a fibration by great circles if Z(06)(x) = 0 only when

x = x" . Obviously 2Z2(8)(x) = 0 at x = x' . We have;

Lemma 14. For a smooth map 0 : 52-——$»G(4,2) , the

function Z(8) , for fixed x'(:'-s2 , 1is critical at x = x'

Proof. Fix P2 in G(4,2) . The function ;(Pl,Pz)

on G(4,2) is critical at P, =P

1 Thus Z(8) is

2 .

also critical at x = x' .

Now consider the Hopf fibration Ty S3~—~—7»82

- 13 -
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The associated map 60 : Sz~w;—» G(4,2) = 52l % 52_1

is given by 0y(x) = ( 1//2 x , «

0) . Where oy =
(1//2 , 0, 0) . For two points x = ( Xy 1 Xy X5)
and x' = (xl', x2’, x3’) in 82 , we have
2 8y(x), 0,(x")) = {x, x'> - 1/2
2

I

y 9 — 14
-1/2 Zl(xi X )T .

Thus the function Z( 90) is critical if and only if x
= x’' . The symmetric matrix ( 322( @O)/ Bxiaxj )

is positive definite.

Let Emb( Sz, G(4,2)) denote the set of smooth

embeddings of 82 in G(4,2) with C2—topology. Since

82 is compact, we obtain the following.

Proposition 15. There exists a neighborhood U of 60

in Emb( Sz, G(4,2)) such that the function 2(98)(x,x’)

=z( 0(x), 6(x')) 1is equal to zero if and only if x = x' ,

for any X, x’VGE S2 and ® € U

Corollary 16, In each direction in Emb( S2 , G(4,2)) ,

there is a deformation of fibrations of S3 by great circles

‘starting from the Hopf fibration.

- 14 -
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The group of diffeomorphisms of s? , denoted by

Diff 82 , acts naturally on Emb(SZ,G(4,2)) . We denote

by Diff 82\\Emb(SZ,G(4,2)), the quotient space. Let

ST S3-w~» B be a fibration of 53 by great circles.

The B 1is diffeombrphic to 82 . Thus we have the class

{6} in Diff s\ Emb(s?,G(4,2)) .

Let ™y and T, be two fibrations of S3 by

great circles , and let {61} , {92} & Diff Sz\\Emb(Sz,G(4,2))
be the associated classes. We say that T and LN

are isometric if there exists a budle map F from L

to Ty such that F is an isometry of 83 onto itself.
The group O0(4) acts naturally on G(4,2) and on

Diff sz\Emb(sz,G(z;,z)) . We denote by

Diff Sz\\Emb(Sz,G(4,2))/O(4) the quotient space.

Proposition 17. Two fibrations Ty and ™, of 83
by great circles are isometric if and only if the classes
{6,} and {6,} in Diff s°\Emb(s°,G(4,2))/0(4) are

equal.

Remark that we can choose the neighborhood U 1in
Proposition 15 such that U 1is invariant by the actions
of Diff S° and O(4) . The space Diff S2\U / 0(4)

N . . . " . . '
is of infinite dimension.
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