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On the Axiom of Multiple Choice

By
Nobutaka Tsukada (@ E r‘a'_ A%)

§ 1. . Introduction

By the axiom of multiple choice (MC) we mean the statement:

MC VFor every family S of nonempty sets, there exists a function f on S
| such that £(X) is a nonempty finite subset of X for each XeS.

This pai)er discusses the étrengéh of MC in Zermelo-Fraenkel set ﬁheoryv
with atoms(ZFA).Atoms are objects which differ from the empty set'; and which .
have no elements. The language of ZFA ‘conéists of = and € and of two consﬁant
symbols O(the empty set) and A(the set of all atoms). Thé axiom of ZFA are
‘as follows: o
O Empty ‘set. —1Fx(x€0).
A. Atoms. ' \f z(z¢e Aem1z=0 AT 3 x xX€z).

Atoms are the elements of A; sets are all objects which are not atoms.

A1.\ Extensionality. Vset X V set Y(\.v‘u(uc; X ¢« ue ¥Y)— X=Y).

A2. Pairing. A3.Complehension. A4, ﬁnion. A5, Power se.‘t.,A6. Replacement.A

AT. Infinity.

A8. Rggularity. \/ nonempty set S dx¢ S(xnS=0).

If we add to ZFA the axiom A=0,then we get the usue;l Zermelo-Fraenkel set

theory (ZF).
For a set S P(S) denotes the power set of S P(S)={X]X is a set, X< Sg.

For any set S let P¥(S) be defined as follows: PO(S)=5,P>"(s)=P%(S)\ PP(S),

, P°‘(S)=\,’€<¢Pp(s) for limit X j;and let P°"(S)=\&eel:‘°‘(s). Then we have V=P¥(A).

Let U=P*®(0). Then U is a model for ZF.
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Clearly the Axiom of choice (AC) implies MC. In ZF, MC implies AC.
But in ZFA, MC does not imply even the axiom of choice for pairs (ACZ) [ Jech,
Theorem 9.1,9.2,4.3 ]. So at a glance we feel that MC is very week in ZFA.
This feeling is correct in some senge , but not in another. To state these
senses and our reshlts, we enumerate notations. In order to make the strength
of MC clearer, we give also some interesting statements not discussed 'in

this paper.

AP, “Antichain P;inciple. Each partially ordered set has a maximal antichain
(i.e., a maximal subset of mutually incomparable elements).

LW. Every linearly ordered set can be well ordered.

PW. The power set of ‘every well ordered set can be well ordered.

CP. Cofinality Principle. Every linearly ordered set has a cofinal subéeti

which is'well‘ordéred by the induced ordering.

Reg(®R). ¥ is a regular cardinal.

NW. Every linearly ordered set which is not well ordered has aﬂbinfinite‘
descending sequence.

DC. Principle of Depending Choices. If R is a relation on a nonempty set S
such that for every x€ S there exists ye S 'ﬁith xRy, there is a sequérice
{x_ |n<w) of elements of § such that WV n<w aner_‘ .

CAC. Countable axiom of Choice. Every countable famiiy of nonémpt§75ets
has a choice function.

EEJ“ The union of countably many countable sets is countable.

UC(TR). The union of countably many countable sets of reals is countable.

IC. Every infinite set has a countable subset.

IC{ R). Every infinite set of reals has a countable subset.

CL. Every cluster point of a topological space is the limit of a sequence

of elements of the space.
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CL( R). Every cluster point of a set of reals is the limit of a sequence

of elements of the set.
Every subspace of a separable metric space is separable.
Prime Ideal Theorem for Boolean Algebras. Every Boolean algebra has

a maximal ideal.

. Order Extension Principle. Every partially ordered set can be extended

to a linearly ordered set.
Ordering Principle. Every nonempty set can be linearly ordered.
Axiom of Choice for Finite Sets. Every family of nonempty finite

sets has a choice function.

"ACn. Every family of n-element. sets has a choice function.

M(w). P(w ) has a measure which is O on finite sets.

" 2VWM(wW ). P(w) has a 2-valued measure which is 0 on finite sets.

BP.

g 18|

Every set of reals has the Baire property.

. Every set of reals is Lebesgue measurable.

. Every linearly independent subset of a vector space can be extended .

" to a basis.

. Nielsen- Schreier Theorem. Every subgroup of a free group is a free

group.
For any field F, an algebraic closure of F exists and is unique upto

isomorphism.

Most of our results are shown in the following diagram.
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Unprovable from MC ; Provable from MC

PI-—0E >0P -ACF 2>AC

2

NS

/,AL

¥
.
[}
'
. X
|
AC—VB . >MC—)AP—>LW-—\-PW X .
v »SM
[}
|
]
|

\ /,Reg(k‘,,)

\ Reg(g(‘ )
DC - 5> NW
‘ 1
/ uc N
CAC —IC - >
. I8
\'CL ' > CL(R)

Arrows —> in the diagram are either found in [Jech] or clear.
Arrows X will be shown in § 2.

Looking at the diagram, we feel MC is very week in the sense that
MC does not imply weak statements AC2 and UC and important statements
PI, VB, NS, and DC.These results will be obtained in § 3.

Next observe that the most of interesting statements in mathematics
concerns only on sets independent of atoms (i.e.sets in U). Theorem 2. 1
shows that if @ is such a statement and AC —» ¢ is provable in ZF,

MC — Cp is provable in ZFA. In this sense MC ié strong. Moreover MC
implies CP and CP implies some interesting statements. These are the

contents of § 2.

8 2. Provable Statements from MC

For a formula ¢ in the language of ZF(i.e. without the constant

symbol A) let (g’U denote the formula whose quantifiers are restricted to U.

-4 -



182

Theorem 2.1 Let % be a sentence in the language of ZF such that
(%) AC » @ is provable in ZF

and such that

(k%) <§’U - @ is provable in ZFA.
Then PW = @ is provable in ZFA.

Proof. We use the following sentences are provable in ZFA.

(N WU for each theorem  in ZF.
(2) pw -» pwY.
(3) % — acV.
(1) is because U is a model for ZF. (2) is because P(S)= PU(S) for Sevu.

(3) Since PW —» AC is provable in ZF, from (1) PWY —s ACV is provable

in ZFA.

Now let ¢ be a sentence in the theorem. Then from (% } and ()
4) acV- ?U- is provable in ZFA.

Combining (2),(3),(4) and ($%) we have that PW — 4  is provable in ZFA.

Corollary 2.2 In ZFA, PW implies the following statements:

1y M>W).
(2) ~1BP.

(3) 2VM(w ).

(4) —LM.
(5)  Reg(Ry)- . , .
(6)  sM.

Proof. (1) ~ (5) are direct consequences of Theorem 2.1,
(6) Let <S,d> be a separable metric space, and {‘xn\ n< 0 } be a
dence subset of S. Since the function f: § — W defined by

f(x)= <d(xn,x){ n < > is injective and w&a € U we can apply TheoremZ.'Ii.«

Using Theorem 2.1 we can enumerate many other statements which are

provable in ZFA+PW. Here we write only three such statements in contrast

to Theorem 3.3.
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Corollary 2.3 In ZFA, PW implies UC(R),IC(R) and CL(R).
Theorem 2.4 MC implies CP in ZFA.

Proof., Since LW —» CP is trivial and MC — LW is known, it follows

that MC — CP. But here we give a direct proof. Let ({ L,<? be a

linearly ordered set. Using a multiple choice function £ on P(L),we can

define 1,¢L by induction on &

1y = the < -least element of f({ le L | \7‘§<O( Ip< 1 $ ).

Then the set { 1,| 1,is defined § is cofinal subset of (L,<) and

well ordered by <

Remarks 1. CP -» LW is not provable in ZFA. Since in ZF LW —> AC, if

CP ~ LW in ZFA, then CP~ AC in ZF, which contradicts a results of.[Morris].

2. PW > CP 1is not provable in ZFA. Since both PI— OE and OEACP — AC,

are provable, if PW = CP were provable, PW A PI — AC would be so. But in

medel

the ordered Mostowski\"PW,\ PINTTAC holds [ Jech,Theorem 7.1,9.2GV) ] , a

contradiction.

[ Morris] described without proof a number of implications from CP in

They hold also in' ZFA eventually with a slight modification.

ZF.
Definition W0= the class of all well orderable sets,
Wh= \J§<,\W§ if X\ is limit,
WL oy X | veon AXge WY,
W= Useon"” -
Theorem 2.5 In ZFA, CP implies the following statements:
(1) Each linearly orderable W-set is well orderable;
(2) 1If for somex P*(A) is not well orderable,the least such & is not limit.
(3) Every linearly ordered set has a maximél well orderable initial segment.
(4) No infinit Dedekind finite set is linearly orderable.
(5) For every linearly ordered set L,the least § not < L is a succesor
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cardinal.
(6) Reg( KRpyy) -
Proof. (1) By induction on ™ we prove that if L,<;> isa 1inear1y
ordered set and L& W¥, then L is well orderable.
This is trivial when ¢ is O or a limit, so assume 0<=§+1.
Let L= U§<VLE’ LEEW‘-X. By induction on Vv .
If v =0, L=0 so L is well orderable. If v =[A+1,L=(\J§~<“L{)V Ly
By the induction hypothesis on V , U€<KLE is well orderable, and the

induction hypothesis on & L is well orderable, thus so is L.

Let vV be limit. Set L's =’\J._1:<EL;} for £<\/. By the induction hypothesis

on V each L'i is well orderable. Set
z = { <L'f WD \ E(\//\(L'i ,W > is a well ordered set } -
For (L'i WY, (L) ,Z2)¢f set
(L WY < <L 27 o §9 y (3= ATRVIQL=1E A< 1)),
where lg is the c—th element in(i-é,.W). Then{Z , <> is a linearly ordered
set. By CP there is a cofinal g,ésuch that <‘£O’<> is a well ordered

set. We may assume for each §<y at most one <L'§ ,W> is inI:O. For
each l¢L set fl= /\{Ela(L' W>el 0 léL'é§ . Defi‘ne 4 by

11" € <8y (8178 AlWglN.
Then < L, <> is a well ordered set.
(2) Let &« be limit and assume;\’that pR (A)v is(well ordered for all | §<<X .
Set
L= {(PE(A),W>! Q(a,\(Pg(A),W> is a well ordered set such that

¥ x,y¢ PE(A)(Xey - ny)} .

Z is not empty.Recall that every well orderd set (PP(A),W> induces a
linear ordering W on PBH(A) by

SWT e« JT(V¥n<i( x‘f‘e8<—> xf;]eT )N x‘%g{S/\ x?e T),

where x‘% is the § - th element of pf a),w). For {PPa),w>,<pf),wde’l

_>7 -
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let ( P8 (a), W) < < (a),w> - S
&> @<§‘ v (B=0"A 38<$ ( W and W' agree on PS(A) A .
35(VQ<§X-=X‘:{A x{e P6+1(A),\ Wva% ).
Then (%,‘( > 1is a llnearly ordered set. Applylng CP and es1ng a similar
argument :as ins (1) we can construct a well ordering on P°‘(A).
(3) Let (L < ) be a 1inearlyv o‘rdebredk‘se‘t Set .
:( ‘} <1, W) i '[_ is an 1n1tlal segment of L and <(I,W) 1is a well
ordered set } » - | o e
For <1w> (I LD e% ‘seﬁ
: : '
(1, Wy< T w><-> 1C T v (1 I'A 32Vq<§(1 _1,\,\1§< ‘g))"
Then (£,<X> 1is a 11near1y ordered set. Applylng CP to <.C <> and
using a similar argument as in (1) we can construct a max1ma1 well orderable
initial segment.
(4) Let <L,< L be an infinite llnearly ordered set.97(3) take IC L
a maximal well orderable initial segment By the max:.mallty I is not me te.
So we can enumerate the elements of I without repet:.ﬁons as I = i 15{ §<oc§
for some (x>\o Slnce § 1 [ €2<o( § C L L is not‘ Dedekind finite.
.~ (5“) Let < L,<L> be a llnearly ordered set and }(m be the least aleph
not < L. Consider the set | ‘ ! N |

Z=1{v | (70 is an 1n3ectlon from an ordlnal to L}

For (f ff ez set
P <. tf < dom((y)< dom(fg )V
dom((f)— dom(¢ ' )/\3 y< dom(\f)((f’ﬂ &? (Y/\(f Y )<L<{ « )))
Then (Zf -<> is a linmearly ordered set. By CP there is a coflnal sequence
{ (’02‘ < G } . Set L0 =Vv<? rng( ‘f’z . For each 1v:—LO let El be the

least f such that 1 6 rng(kf’§ For 1,1'¢ LO set

1< "o & <$1,v ( £, 51'/\9’; (1)< c,fz's (1) . Then <L,< o)
is a well ordered set. Assume X 1is 11m1t. Slnce every rng(‘fs) is embeddable

into L, and for each Kq( L there is a § such that dom( ¥e ) ZK'I’
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the order type of ¢ L0’<O> ZU i<ﬁdom(<§?2 )» 7 Ku(, which is a contradictiop,
So & is not limit. - v
(6) Assume that cf(x+)’§ R and let f: ] — XY be a cofinal map such
that ¥ E<RIE(Z)] =R . set | |

L = { g ‘ g is a bijectién from ¥ to £(£) for some E( R ? ,
g < g & rng(é) < rnglg') \, ( rng(g)‘= rng(g')
~ TnexC 811 = 2 A s(< s ().
Then (L, g) 1is a linearly ordered set. By CP there is a cofinal sequence
< gé, I3 <> QOQL. We may assume X X\ X since instead of this sequence
we can take a subsequence such that rng(gg) is an increasing function of é‘
Let J : XXX—=X ) Ki: X —>» R (i=y2)be the standard pairing functions.
Define F : X —> §<'+ by
F(S)=" gK1(€)(K2(§)) if K1('E)<‘€>(’
0 - otherwise.

Then F is surjective,a contradiction.

§ 3.4 Unprovable Statements from MC

First we fecall simply how to construct permutation models and some
notations and definitions. TFor details refer { Jech,Chapter 4 ] .o

We work in the theory ZFA+AC.
(1) Let U be a permutation of the set A. Using ¢ -induction we can define
T(x ) for every x : W(x) = {)T(y) | yex % . Under this definition 7T
becomes an ¢&-automorphism of the universe.
(2) Let Gi, be a group of permutations of A. For each finite set E of A
set fix(E) = {’JTG%(VQ&'E- T(e)=e}. Let £ be the filter of subgroups of
¢ generated by { fix(E) | E is a finite subset of A) .
(3) For each x let sym(x) = {'T['G% t 7C(x)=x§. When sym(x)€ -F we call

X 1s symmetric. If x is symmetric,then there is a finite subset E of A

-9-
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such that fixtE) ¢ sym(x). We call such an E a support of x.

(4) Define the class ’%‘ = { x| sym’(x)‘é S-\',\i ('/}{‘k consisting of
all hereditarily symmetric objects. We call"%\ ’a pefmutation model
determined by (‘,’g . Then’\,{\ is a trénsitive model of ZFA and contaiﬁs .all

the elements of U and also A

To show that the permﬁtation models used below éatisfy MC it
suffices to prove fhe following 1emma,which is a general description of :the
principle used to prove that .the second Fraenkel model satisfiés MC tjééh,
Theorem 9.2(?)] .
Lemma 3.1 Assume fhe set A is divided into disjéint finite sets:
_——A Ny : .

@} be the direct sum of @’}i's. Then the permutation model determined

ieiAi' Let G’}i be a subgroup of the symmetric grovilp‘ovai,and

by & satisfies MC.

Proof. Let X €'}f be a set of nonempty sets. For each x€X set

o(x) = { W) | Te symX)} . Let y¢x,then

M {em| ¢esymxte W

@ T o] pesmm] = 9| § esynme)f .

3) {¢W | Pesymx)} is finite.

(1) yex implies y ¢f, so {9 &) pe symG) JCH - Since sym(x) € £
and sym(x) < {Q(y)l Q € sym(x) | , {pm | Pe syn(x) Je K.

(2) follows from a simple computation.

,i €& I such that

(3) Since each A, is finite,we can take i1, eesi

A, U ..oy Ai is a support of y. If W ,7'e€ G} and agree on AiU"‘UAi ,

o n 1 n
then T(y)=T"(y). Thus

0 < H’Tf(y)‘ T € smy(x)H < .i{smy(y) : {7;5(9&\ WiAiP";VAi =1k‘_H
< | nk=1Aik§ <w-

Using AC there are choice functions £, g on X, {O(X)I xe X { respectively.

...10_
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From (2) we can define a function on X by

I"('i((g(o‘(x))))= 'K{‘Qf(g(dx))) | Q€ sym(g(o(x))) } for each x€ X and
T & sym(X). ) (2) also implies that F is in M (1) and (3) show each

F(x) is a nonempty finite subset of x for each x € X.

It is clear that MCAACF — AC  is provable in ZFA. But we have
Theorem 3.2_.‘ MC/\Vn< wW ACn——> AC 1is not provable in ZFA.

is
Proof. Assume that the set A Countable and let A=U;=°OA'1’ where

_j.n n . _ . '
An— { a1,...,ap § sP being the n-th prime number. Lgt G} be the group

). The

n
model ”‘m determined by_@} satisfies \'fn<‘uo ACn but not ACF [ Jech,

generdted by the following permutations of Ai: 7Cn=(a111,...,a

Theorem 7.11) . By Lemrﬁa 3.1 in% MC holds.

Next consider the corresponding statements to Corollary 2.3.
‘Theorem"ﬁﬁ © MC does not imply IC,UC,CL in ZFA.
_flc&f_. Let the set A be countable and divide it into céuntably many
disjoint pairs: A=U;:0An,An= { anO’én13 ,an‘ofani. Let (9} be the group
_of all those ‘pefmuta'i:io'n‘sf of A whi'ch-'preserve the pairs. ‘The péi:mutation
model 4f) determined by this 6f is the second Fraenkel model. It is known
that = (1) "‘The“'sequen‘ce (A ja<w > is ‘inA4{l,thus the set {A I n<wf

is countable in \%‘ . 7.

(2) If f:w—> A 1is ;n%then'rﬁg(f) is finite.

(3) MC holds in @\ \‘
From (1) and (2) IC and UC ire falsé in "’K\ . Consider Au{0} as a
topological spase letting '

{{agef | ncwnic2t o {\V viotln<w]

n< i<(¢Ai
as open basis. Then 0& A —-{0} but O is not a limit of any sequence of

-y

elements of A.

Theorem 3.4 MC does not imply VB,NS,AL in ZFA.

-11-
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Proof. (1) Assume that the set A is countable and divide it into

countably many triples: A= A = | a% ,ah,a’

n=0"n’ ‘n -1°20°21 V. cConsider An as

n
a vector space over Z3, aO

sum of An's, Let %n be the automorphism group of An as a vector space

as the zero vector of An,and A as the direct

and 63, be the direct sum of Gx,n's, In the permutation model’\(\detérmined
by this % MC holds by Lemma 3.1. To show VB is false in ’1(\ it suffices to
prove that every linearly independent subset B €’K\ of A is finite.

Let E be a common support B and the vector space A. By [E7) we denote
the subspace generated by E. Assume be B — {E]l. Then there is a least
n such that bn é E , where bn is the n- th coordinaté of b, Let It be
the permutation ova defined by TC (bn)= ——bn, N (_bn):bn and T (x)=x
otherwise. Then Tfe‘(}} and T &€ fix(E). Since bﬁ f(_E] ,bnfO,so T (b)#b.
From q7 € sym(B) (b)e B,hence { b, W(b)§ is linearly independent. :

Set b#*=2b+ T(b). Then from the linear independence of |{b, W(b)} ,also
{ b, "l\"(b*‘)} is linearly independent. But b*+ R(b*)=3(b+ T (b))=0,
which is a contradiction. So B C {E] and B is finite.

(2) Letr A be countable Consider the commutator subgroup C of the free
group whose génerators are the elements of A. In LJéch,Theorem' 10.12}
it is shown that C is not free in the basic Fraenkel model. The proof
is based on the following facts: |

(*) For any finite subset E of A,there are two distinct elements u,v of
A—E and‘ a permutation W€ 0f of A such that T(u)=v, T(v)=u and TC(a)=a
otherwise,

In the second Fraenkel,too, (*) is the case. So C is not free also in °
the second Fraenkel model.

(3) In [Jech,Theorem 10.13] it is shown that in the basic Fraenkel
model the field F of fractions‘ of the polynomial ring R [A] has no

algebraic closure. The proof is again based on (*), so in the second

._12_
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Fraenkel model F has no algebraic closure.

The following theorem implies that in ZFA MA adds no
generalrestriction to the order of cardinals.

Theorem 3.5 Assume that A is infinite. Let ¢ I,S}

be a partially ordered set with | A} = {I| and I€ U.
Then there is a permutation model in which MC and the following
statement hold:
JCs ] tery Yige 10igi e [5) S8) )
Proof. Divide A into I Xy) disjoint pairs:
= . \ / . .
A = \/’W\;\/vww{amo’ amx;
Let @1 be the group of those permutations of A which preserve
the pairs. In the model ’L/] determined by this (9} , MC holds

by Lemma 3.1. Since iel—%gjél\ j:gi; is an order

monomorphism, it suffices to represent {P(I), S'7 in the
order of cardinals. For each pe I set :
Sp= {ainkliep/\n<w,&k<2}. {Sp{ p CI>CA is
easily checked. If p < q < I, then S < S and so '

= - P~ 49

Fs | < S i .  Assume i and take i N

| pl-—\ q\ nW u pg_q n ake 1¢p g. Let
g: Sp - Sq be a function in Y. We show that g is not
injective. Let E be a support of g. Since E is finite we

can take an n such that ~ E=0. Let 7T be a

{ainO’ain”
permutation of A such that "t(ainO):aini”T((airﬂ):ainO and
TC(a)=a otherwise. Since TC € fix(E), qé&sym(g). Since

g(a in1) < Sq and i & q “(g(ain1))=g(ain1) by the choice

)=('T\g)(’7((ain1))=’|rg(ain1)=g(aim).

of TU . So g(ainO

_’]3_
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