goooboooogn
0 4820 1983 0 41-48

41

Design of a Lisp Machine - FLATS

* %

E. Goto*r**, 7. soma*, N.

K. Hiraki**, M. Suzuki**,

Inada*,

K. Shimizu**

T. Ida*, M. Idesawa*

, B. Philipov**

* The Institute of Physical and Chemical Research

Wako-shi,

** Dept.

ABSTRACT -

Design of a 10 MIPS Lisp machine used
for symbolic algebra is presented. Besides
incorporating the hardware mechanisms
which greatly speed up primitive Lisp
operations, the machine is equipped with
parallel hashing hardware for content
addressed associative tabulation and a

The Maln Frame

Saitama, -

of Information Science,
Bunkyo-ku, Tokyo,

é CPU: 50 ns clock ECL Logic
{ ~100 ns/Lisp Instruction (10 MIPS)
8B 8 B*3 ‘8 B
;I Cache #l;i V-Cache #2] D- Cache #3
_WNQ,KB * ;’ 6 KB o 32 KB #4
*kk * kK * k%

MCU (Memory: Control Unit
with paging hardware)

351 Japan

University of Tokyo
113 Japan

very fast multiplier for speeding up both
arithmetic operations and fast hash
address generation. :

1. Introduction

The FLATS machine is configured as shown
in Fig. 1. A more detailed:diagram is
shown in appendix 3.

SVP and 1I/0's

B SVP (Service }
— | Processor
PDP 11) i

MM (Main Memory) 400 ns Access

16 MB * (4 MW **) Dynamic MOS RAM

with ECC -(SEC/DED)

l * k -
— RN v S U

Paging Disks<

[

~-—1 . 0Other I/0's

b

10 ns R/W Access

Time, ECL Bipolar RAM.
32 B write buffer, non store through.

* 1 B = 1 Byte = 8 bits
** 1 W =1 Word = 4 Bytes = 32 bits
*** 32 B Parallel Block Transfer
#1 64 set, .4 way Set associative,
$2 64 set, 1 way
$#3 256 set, 4 way
$#4 D-cache is equipped with an 8 word

for speeding up searching.

Fig. 1

(32 B) parallel match logic

Configuration of the FLATS Machine

42
2. Basic Data Format

2.1 The standard word format consists of
4 bytes (32 bits): 1 B (tag) + 3 B (24
bits, wused for addresses or short inte-
gers) . Non-standard formats (32 bit, bit
pattern and 8 B formats) are described
later.

2.2 The 8 bits in the tag byte are used
as: 2 bits (used for cdr coding) + 1 bit
(short float word tag bit) + 5 bits (used
for identifying 32 data types)

2.3 Hardware-~tagged data types are shown

in Fig. 2.

S-expression
(arlxy)

identifier constant

string number function vector bit AMT CAT
pointer vector
short long short floating BIG
integer 1integer point number FLOAT
(BIG NUM)
+ H-type data
+ other system data
Fig. 2 Data Types

These data types are checked by hard-
ware. "BIG NUM" and "BIG FLOAT" argu-
ment(s) in arithmetic operations causes a
trap to extended arithmetic routines.

Most data types except CAT and AMT
are similar to those of other Lisps. CAT,
AMT and H-type data are associative
(hashed) data types and are explained
later.

3. Address (Pointer) Space

Word addressing is employed, except
for bit vectors with bit addressing capa-
bility. The virtual addressing space is
divided into two sub-spaces, the I-space
and the D-space, with 224 yora capacity
each. The I-space (I for Instruction) is
used for storing compiled codes, and
pointers into this space are tagged as a
function pointer (cf. Fig. 2). All other
data types are stored in the D-space (D
for bata).

4. Basic Instructions

4.0 Instructions are word addressed

Most instructions are 1 W (4 Bytes) in
length and the first byte is the op. code:
(opseee) :

471 High Speed Registers

The 128 global registers (G-reg.) and
127 local stack frame registers (F-reg.)
are provided, and the "V-cache" (Fig. 1)
is used to realize these registers. Three
identical copies of each register : are
provided in order to realize 3 parallel

.. read ports. Use of both F- and G- regis-

ters would speed up the execution time of
some programs (cf. recursive APPEND in
appendix 1).

4.2 R3, the 3 Register Address, Type
Instructions

R3 instructions consist of 4 bytes
(0P, R1, R2, R3). Each of R1l, R2 and R3
is an 8 bit register address. While a
register address 0 through 127 specifies a
G-reg., 128 through 254 specifies the
offset address of an F-reg. relative to
CFP (the Current Frame Pointer). Register
address . 255 is used to specify an imme-
diate constant (32 bits) at the next rad-
dress. Typical operations performed by a
single R? type instruction are:)

r3 := cons(rl, r2} 100 ns.

r3:= addlrl, r2]}
r3 := subtract([rl, r2]
r3:= multiplylrl, r2]

100 ns, if Rl, R2 and the results
are all short integers. BIG~NUM (big
number) argument(s) causes a trap to
BIG-NUM routines.)

4.3 R j R Type Instructions)
This format consists of 4 bytes: (OP,
R1l, "j", R3). The meaning of the 3 bytes
op, Rl and R3 is the same as in R’ (4.2).

"j" stands for a conditional short jump to
a.relative address .j, -128 < j < +127.
Typical operations of this type are:

r3 :=.carlrl,”j"]

r3 :=cdrlrl,"j"] .
100 ns if the invisible pointer of cdr
coding is not involved. Makes a short
jump :in-100 ns if car or cdr of Rl
cannot be taken.

eqjfrl,"3j",r3]

egnjlrl,"j",r3}
Always 100 ns. Short jump or non-jump
to "j" on the truth of (EQ Rl R3).

=rplacalrl,"j",r3]
= rplacd(rl,"3j",r3]

100 ns if the invisiblé pointer of cdr
codlng is not involved. Short jump to
"§" in 100 ns on bad’ argument(s)

atomj[rl," -]
tomnj[rl' =]
- Always 100 ns. Short jump or ‘non- jump
to "j" on atomlc R1.

neqj[rl, ',I.'3]

neqn][rl' ."Ir3] "
Short jump or non-jump to "j" on nume-
rical equality of Rl and R3. 100 ns
if Rl and R3 are short integers. BIG-
NUM argument(s) causes a trap to BIG-
NUM routines, and non-number argu-
ment(s) to an error handler.

4.4 GOTOs

The "GOTO J" instruction has a one
word format: (1 byte op code) * (a 24 bit
I-space address). The time for GOTO is
made practically zero by parallelism as
described later. On the other hand, the
instruction for “computed GOTO on an inte-
ger Rl to one of n = R3 places” has a
special n+l word format and takes 250 ns
to execute.

4,5 CALL, RETURN - C-stack Instructions

A hardware stack, called the C-stack
(C for Control) different from the local
stack frame (cf. 4.1), is provided for
stacking a return address and an incre-
mental value, DELTA-CFP of the CFP (Cur-
rent Stack Pointer cf. 4.1). The "CALL"
instruction is always followed by a "GOTO
J" instruction. The first byte of the
"CALL" instruction is the op. code, the
second byte is the immediate value of
DELTA-CFP and the last 2 bytes have no
significance. In the "RETURN" instruction
only the first op. code byte is signifi-
cant. "CALL" increments the CFP by DELTA-
CFP, pushes a linkage word, the return
address and DELTA-CFP onto the C-stack,
and then goes to J. "RETURN" pops the

linkage word from the C-stack, festores

the o0ld CFP by subtracting DELTA-CFP from
the CFP and returns. The times for
"CALL" and "RETURN" are also made practi-
cally zero by built-in parallelism.

5. The Architecture for Basic Lisp
Operations

5.1 .Cdr Coding and RCONS

Besides implementing cdr coding [3]
by hardware as in other Lisp machines,
RCONS, (Reverse CONS) is also hardware
Supported. The RCONS instruction (RCONS,
Rl, R2, R3) can be defined operatlonally
as a statement-

r3 := cdr(rplacd{r2;cons{rl; NIL]]].

43

RCONS was recognized by Risch [4] as a
type of recursion removal pattern, which
is typical in list copying part of APPEND
and UNION. Recursion can be removed from
these functions by using RCONS, which
constructs a list from head to tail while.
CONS constructs a list from tail to head.
In the cdr coding system, however, the use
of RPLACD would generate a non-linear
structure occupying 2 word per list cell
in excess of a linear structure. RCONS is
hardware implemented so as to construct a
compact linear list structure from the
right of the free list area:while CONS
does the same from the left [10]. A prog-
ramming example with RCONS is given in
appendix 1 (cf. APPEND (Iterative)).

5.2 Pipeline and Advanced Control

Three pipeline stages I, V and D are
employed: "I" for "Instruction" fetching
and prefetching, "V" for reading and
writing the "Values"™ of high speed
registers (G and F reg. cf. 4.1), and "D"
for instruction execution with memory
accesses through the "D-cache". Besides
these 3 pipelined stage units, the C-unit,
provided for controlling the C-stack, runs
concurrently. The C-unit makes use of the
D-cache on a cycle steal basis. The I-
cache is separated from the D-cache to
improve the performance of instruction
prefetching. Up to 6 instructions can be
prefetched within the I-stage unit. The
time needed for branching by short jumps
(4.3) is made practically zero by pre-
fetching both instructions 1in the
branching and non-branching sides in par-
allel with the evaluation of the branching
conditional predicate. GOTO, CALL and
RETURN instructions are executed in paral—
lel with the execution of other ifAstruc-
tions by means of the I-stage unit and the
C-unit. Thereby, the time needed to exe-
cute these instructions is also made prac-
tically zero.

Since conditional branching, GOTO,
CALL and RETURN instructions occupy about .
50% of the compiled codes in typical. Lisp
programs, the speeding up of these in-
structions by parallelism is considered
very effective. Some examples are given in
appendix 1. Wherein, examples of ASS0CQ
and APPEND show that the speeding up of
CALL and RETURN is almost effective as
recursion elimination.

A new pipeline recurrence relatlon
formulated by Shimizu was used in the
design of the pipeline logic [9]. A logic
simulator system DDL* written by Shimizu
[9] has been used throughout the design of
the FLATS. The DDL* system had to be writ-
ten in Fortran (about 14,000 lines) be-
cause all Lisp systems accessible to our
group were considered too slow. The world
would have been dlfferent if FLATS were |
available! ’

44

5.3 Vectors

The operational specification of vec-
tor instructions is the same as MKVECT,
GETV and PUTV in the Utah standard Lisp
[5]. A vector is internally represented
by a "vector descriptor" which consists of
a pair of pointers (L, U) occupying two
words (8 B format data). L and U give the
lower and upper bounds of the memory spaces
allocated for the vector. The instruction
(MKVECT, Rl, -, R3) places a pointer (tag-
ged'as a vector) to a new vector descrip-
tor (L, U) in R3, where U = L + R1l, pro-
vided that Rl is an integer representing
the size of the vector. Vector range
violation is always checked by hardware in
vector access instructions, GETV and PUTV.

5.4 Bit Vector for Garbage Collection

A bit pattern handling hardware [6]
is implemented for speedlng up the marking
of active cells, pointer adjustments and
relocation in compactifying garbage col-
lection. Bit vectors (32 bit word) with
bit addressing hardware are used for this
purpose.) '

6. P-list vs. CAT, AMT
6.1 P-list (Property-list)

P-list is an important programming
concept introduced in Lisp 1.5 [1]. How-
ever, it often causes global name clash
problems because P-1list is usually asso-
ciated with a global name (atom). This
problem can be resolved by using a "gen—
sym" mechanism as shown in 6.2, . P-list is
usually implemented 11terally as a "list

structure", which results in a rather slow

O(n) operation time when n items are
placed on . P- llst.

6.2 AMT and CAT

Two data types, AMT (Associative
Membership Table) and CAT .(Content
Addressed Table), which may be regarded as
nameless P-lists, are provided. Opera-
tionally, each AMT or CAT instruction.cor-
responds, line by line, to a P-list opera-
tion as in: ‘

P-list L AMT, CAT

pvzé mkcat[];
putcatlp; A; 1];

p := gensym[];
putlp; A; 11

x :=.get[p; Al); x := getcatlp; Al;
a 'z= gensym[]; . a := mkamt[];
flagla; A}l; putamta; .Al;

y := flagpla; Al; y := getamtia; A};

The values of x and y are 1 and T
respectively in each program. The speed
up is realized in AMT, CAT instructions by
skipping the gensym mechanism and by using
hardware supported hash retrieval so as to
realize O(l) operation times.

7. Hardware Hashing and H-Type Data

In the D-cache (cf. Fig. 1), 8 words
are compared in parallel to speed up the
searching by a hashing hardware [7]. Be=
sides speeding up of AMT and CAT opera-
tions (6.2), hashing is employed to con-
struct uniquely represented data types,
called the H-type data.

McCarthy [2] once noted about. (HCONS
X Y), which is like (CONS X Y) but only
one copy of the consed object is to be
made by searching through: the storage to
check whether the same structure has been
made before.

Searching is to be made by hashlng
for the sake of speed. HCONS is hardware
implemented in our machine. Equality
checking of two tree structures, say, a
and b, can be made in O(l) time by the
pointer comparing primitive eqgla; b} :when
they are censtructed by HCONS. McCarthy
remarked that the problem of speeding up.
the equality checking of large mathemati-:
cal expressions would be resolved by using
an HCONS scheme. .However, this is not.
sufficient. The expression A + B + C-may
be expressed in many different lists
(ordered n-tuple) (A, B, C), (B, A, C),

... owing to the commutative nature of
the addition. Unique representation of
sets (unordered n-tuple) would: resolve
this problem [8], since the equivalence of
a_set is .defined as: [A, B, c} = {B, a,
Cly een . Hashing hardware for uniquely
defining sets is also implemented in our
machine. Starting from <ATOM> which is a
uniquely defined object in any Lisp, H-:
type data <H> is defined as nested lists
(ordered tuples) and sets (unordered
tuples) : <H> ::= <ATOM>|(<H>,“.,<H>)|
{<H>,...,<H>} in BNF.

Equality check1ng of any two H- type
data can be made in 100 ns by the EQJ or
EQNJ instruction (cf. 4.3). Since H-type
data are unique like any literal atoms,
they can be used as indicators and flags
in P-lists, AMTs and CATs. Thus, -the H-
type data operations are believed to pro-
vide a powerful associative computation
scheme.

ACKNOWLEDGMENTS

The authors would like to acknowledge
members of the FLATS group of Applied
Electronics Department, Computer Systems
Headquarters, Mitsui Engineering and Ship-
building Co., Ltd. for the construction of
FLATS system, and Computer Systems Group,
Fujitsu Ltd. and Fujitsu Laboratories for
valuable comments on design methods for
ECL logic. :

REFERENCES

{11 J.McCarthy et al., "Lisp 1.5, P.M.",
MIT Press (1962))
[2] J.McCarthy, in "Symbol Manipulation
Languages," D.G.Bobrow ed., North Holland,
Amsterdam (1967) :

(31 D. G.Bobrow and- D.W.Clark, "Compact
Encodings of List Structure,” ACM TOPLAS,
yol. 1, No. 2, (1979)

(4] T: Risch; '"A Program for
Recur510nuRemova1 in Lisp,"
‘Laboratory Report DLU- 73 24,

Automatic
DATALOG
Uppsala Univ.

(Nov. 1973)) .
[5] J-.B. Marti, A.C.Hearn, ' M.L.Griss and
c.Griss, "The Standard Lisp Report,”
Univ. of Utah. (1979)

[6] M.Terashima and E.Goto, "Genetic Order
and Compactifying Garbage Collectors,"
information Processing Letters, Vol. :7,
No. 1, (1978)

[7] E.Goto, T.Ida and T.Gunji, "Parallel
Hashing -Algorithms;" Information Proces-
sing Letters, Vol. 6, No.-1,:(1977)

T.Ida and E.Goto, "Performance of A
parallel Hashing Hardware with Key
peletion,” Proc. IFIP Congress 17, North—
Holland, .- (1977)

[8] E.Goto:and Y.Kanada, "Hashing Lemmas
on Time -Complexities with Applica-
tions to . Formula Manlpulatlon," Proc. ACM
SYMSAC 76, :(1976) .
- 'M.Sassa'and E.Goto, "A hashlng method
“for fast set operation," Information
Processing Letter, Vol. 5, No. 2, (1976)

E.Goto, M.Sassa and Y.Kanada, "Studies
on Hashing PART-2: Algorithms and
Programming with CAMs," J. Info. Proc.,

vol. 3, No. 1, (1980)

[9] K.Shimizu, "Design and CAD Implementa-
tion of Formula Manipulation Machine,
FLATS," master thesis, Dept. -of Informa-
tion Science,Univ: of Tokyo, (1982)

[10] M.Suzuki, K.Ono and E.Goto, ."A Primi-
tive for Non-recursive Lisp Processing,"
Journal of -Info. Processing, Vol.4, No.4,
(1981) .

{11] R.Greenblatt, "The Lisp Machine,"
Working Paper 79, MIT Artificial. Intelli-
gence Lab.,. Camb., Mass., (1974)

[12] R.R.Burton:'et al., "Overview and
Status of Dorado Lisp," . Conf.. Record of
the 1980 Lisp Conference, (1980)

Appendix 1. Execution time-of Lisp
Functions : -

The following lists show: the defini-
tions of Lisp functions APPEND, EQUAL, and
ASSOCQ described in FLATS Lisp assembly
lanquage, and their execution time. These
are a part of the test programs used for
the simulation of the FLATS CPU. The. list
may be thought of as the object code com-
piled from -the function definitions .in
Lisp.

APPEND (Recursive)

((SUBR APPEND 2)
(MOV FRL GR127)
((SUBR APPEND A 1)
(CDR FRO Al FRI)
(CAR FRO EJ FRO)
(CALL APPEND A 1)
(CONS FRO FRL FRO)

[

(RETURN)
Al (MOV GR127 FRO)
(RETURN)

EJ (CALL FATAL_ERROR 0))) -

APPEND (Iterative)

((SUBR APPEND .2)

(CAR FRO. Al . FR2)
(CONS FR2 NILR FR2)
(MOV FR2. FR3) - .

LOOP (CDR FRO = EXIT FRO)
(CAR FRO EJ FR4)
(RCONS FR2 FR4 FR2)
(GOTO . LOOP).

EXIT (RPLACD FR2 EJ FR1)
(MOV FR3 FRO)

.- (RETURN)

Al (MOV FR1 FRO)
(RETURN)

EJ (CALL FATAL _ERROR 0))

Note that in the recursive deflnltlon of
APPEND: N

append[x;y]
== [null(x]- >y,
T—>cons[car[x],append[cdr[x],y}]],

where the second argument-y is simply

copied, i.e., y is .passed .from outer
"append”. to inne; "append” without any
change. Such "argument: copying" can -be

removed by storing:the:.value of y in a G
(global) register (actually GR127 in
APPEND). A Lisp compiler for antomatically

removing such "argument copying"” is now
being designed.-
EQUAL (Recursive)
((SUBR EQUAL 2)°
EQUAL (BEQ FRO FR1 A2)
(CAR FRO Al FR2)
(CAR FR1 Al FR3)
(CALL EQUAL 2)
(BNEQ .FR2 TR. Al)
(CDR. FRO EJ FRO),
(CDR FR1 EJ _FR1)
(GOTO EQUAL) .
Al (MOV NILR FRO)
(RETURN)
A2 (MOV TR FRO)
(RETURN) i
EJ (CALL FATAL ERROR 0))

ASSOCQ (Recursive)

((SUBR ASSOCQ 2)

(CAR FR1 Al FR2)
(CAR FR2 EJ FR3)
(BEQ FRO FR3 A3)
(CDR FR1 EJ FR1l)
(CALL . ASSOCQ 0)
A3 (MOV FR2 FRO)
Al (RETURN)

EJ (CALL FATAL_ERROR 0))

46
ASSOCQ (Iterative)

((SUBR ASSOCQ 2)

ASSOCQ (CAR FR1 Al FR2)
(CAR FR2 EJ FR3)
(BEQ FRO FR3 A3)
(CDR FR1 EJ FR1)
(GOTO ASSOCQ)

A3 (MOV FR2 FRO)
Al (RETURN)
EJ (CALL FATAL_ERROR 0))

Execution time of some Lisp functions

Func- Me- Exec.time(cycles) | Approx.
tion thod |--—v—commmmmmeeee speed
name push| pop |total ratio
down| up
A 10 6 16 1
APPEND B [6 12 1.3
C 4 5/2 13/2 2.5
D - - 6 2.7
A 34 4 38 1
EQUAL* B 22 4 26 1.5
C 16 2 18 2.1
D - - - -
A - 16 6 22 1
ASSOCQ B 10 6 16 1.4
: c 8 | s/2 | 2172 2.1
D - - 8 2.8

* When EQUAL returns T.

The execution time listed in the
above table indicates a time for proces-
sing a single element in the argument
lists.

1. Method A

All the instructions are executed in
the D-unit. As for a branch instruction,
the target instruction is fetched after
the execution of the previous instruction
is finished. It takes 4 machine cycles to
exXxecute a conditional branch instruction.

2. Method B

GOTO is executed in parallel with
the other pipeline operations. As for the
conditional branch, the alternative target
instruction is fetched concurrently with
the conditional test.

3. Method C

GOTO, CALL, and RETURN are executed
in parallel with the other pipeline opera-
tions.

4. Method D

Recursion eliminations are made in
addition to method C. For recursion
elimination RCONS is used in APPEND and
tail recursion removal is done in ASSOCQ.
No good iterative method is known for
EQUAL.

Appendix 2. Comparison with Other Lisp
Machines :

Machine CDR Log- Cell Cache Micro
Name Coding ic Space Memory Cycle

3600 2 bits TTL 64 M 200 ns 200 ns
M None 180 ns
K None 100 ns
ALPS2 None L .5 M None 300 ns
Kobe None TTL 64 K None 300 ns*
M 50 ns 50 ns.

(1) MIT CADR [11]
(2),(3) Xerox Dolphin and Dorado (12}

(4) Symbolics Inc.
21150 Califa Street, Woodland Hills,
CA 91367

The project leaders of the following
Japanese machines are:

(5) Ikuo Takeuchi (software) or
Yasushi Hibino (hardware),
Musashino Electric Communication Lab.,
Nippon Telegram and Telephone
Public Corporation,
Midori-cho, Musashino-shi, Tokyo 180

(6) Prof. ‘Hiroshi Yasui,
Faculty of Engineering,
Osaka University,
Yamadaue, Suita-shi, Osaka 565

(7) Prof. Koutaro Mano, .
College of Science and Engineering,
Aoyama Gakuin University,
Chitosedai, Setagaya-ku, Tokyo 157

(8) Prof. Yukio Kaneda
Faculty of Engineering,
Kobe University,
Rokkodai~-cho, Nada-ku, Kobe-shi 657

47

The Block Diagram of FLATS

Appendix 3.1.

SIV1d Jo-weiberq yoorg ayL . *y-g xrpusddy _
) S ‘ K1ouway
AIOWaNW ass ias
uTeR e
, [
1o3depy
U z d AS
L |
JHDOVYO~-d HHOYO-A JHOVO-1I
MU _ mHmUw
|
WAN 514
105592014 [AA{t E , 0L09
. . NI NLIY
LSIT 1 9@pts TIYD
HSVYH TYYd [T youeag
—Hua = i 1 0 youeag
mHWWHHu € € od
udH Lld ,Hmy] ,o.d.d..m - 7 @p1s z od
ady - B)
¥a1 doLS T youeaq| | T Od
ddod 0 -UON 0 o4
. OILANW . 2ouanbas
: _ ‘ , si3zjing 57uno
ZM.UIU@.H_ HLI¥Y 200V 30¢02030-40 COM&US,HUMCH mhmwmwu%
ﬁH H T0I3uU0D
1

e3lRQ 31TaIM 123s1bay

[

48

Appendix 3.2. Characteristics of Sub- LIST processor
units in the Block Diagram
executes CAR, CDR, CONS, RCONS,
Acronym: HCONS, RPLACA, RPLACD, LIST2,
i CADR, and CDDR.
CSTB Control Stack Top Buffer (32 i
bits) with CSP (C-stack WCS (Writable Control Storage)
Pointer, 24 bits)
The size and width are
CFP Current Frame Pointer (24 1024 by 150 bits and 256 by 50
bits) bits. The access time 'is 50 ns
‘ per micro cycle.
GTOP Top Address of . General
Registers (24 bits)
: Appendix 3.3. The Block Diagram of MCO
FAA 0-2 Frame Address Arithmetic 0-2
24 bit + 7 bit adder (6 ns)

ACC ACCumulator (48 bits + sign)
TC 1-3. Tag Checker 1-3 (each 8 bit IVD CACHE
hardwired logic)
T A
ARITHMETIC Address © ‘| Data
Combinatorial hardwired logic
48 bit ALU (+,- etc.) 20 ns
24 bit by 24 bit multiplier 30 ns l PMT] [ECC]
48 bit parallel shifter 12 ns
48 bit over 24 bit divider 200 ns A
BIT handling unit \
32 bit population counter of both PST Buffer
0 and 1 in a 32 bit word. Used for) - S VP
compactifying garbage collection .
{cf. 5.4), : Adaptor
48 bit bidirectional priority
encoder of both 0 and 1 in a \ \
masked 32 bit. word. Used for
compactifying: garbage collection) .
and normalization in floating ' Main Memory
point arithmetic.
HASHiﬁg unit
32 byte (256 bit) parallel search PMT (Page Mapping Table)
on D-cache in 50 ns, . . .
Commutative - and noncommutative . Consists of 2560 entries of 16 bit
hash code | generation of 21 bit virtual memory address as a key
hash address and 7 bit virtual key and 15 bit physical address as a
with 30 bit actual key fully mapped value. A 10 bank parallel
randomized in 50 ns. hashing hardware within 50 ns is

used for searching.
BIG NUM pipeline unit
PST (Page Status Table)

parallel execution of (1) number

arithmetic (24 bits or 48 bits), Consists of 2048 entrigs of phy§i—
(2) address arithmetic, and (3) cal page status (15 bits, 9 bits
-memory access. for on-cache block counter and
others for status flags such as
TAG~-GEN Tag Generator (8 bits) resident, modified and valid).
LPR L area Pointer Register for
CONS
RPR R area Pointer Register for
RCONS
HPR H area Pointer Register for
HCONS

