goooboooogn
0O 4820 19830 145-155

145

An Algorithm for Intelligent Backtracking
Taisuke Sato

Electrotechnical Laboratory

1. INTRODUCTION

The purpose of this paper is to propose a method to improve the
backtracking behavior of Prolog. This method was derived from the one
invented for OL(ordered linear) refutafion. Theréfore ﬁt takeéi into
consideration failures by 'occur check' as well as failures by 'clash(
different constant symbols)' unlike other infélligent backtracking
methods [11[31[4]. Moreover we can be sure that it never destroys

the completeness of proof search.

When we apply our backtfacking method not to a prover like OL but
to PROLOG, we have to treat the failures containning 'not' or 'cut'.
Modifications needed for backfracking in case of those failures are

given in the last section.

Currently, .Prolog searches for an answer in a top-down and serial
manner. If every choice has completely failed, Prolog starts
backtracking to the most recent step where untried choicestaré lef't

and selects an alternative to restart a proof search process.

The backtracking process described above simply goes back over
the path in reverse order without analysing the cause of failure.

Hence, it‘is called Naive BRacktracking (NB for short).

However, NB is prather inefficieht. Let us take a simple
example(see fig. 1). For AND-goal A(x,y)B(x)C(y), A(x,y) is called
first. A(z,a){- unifies with A{x,y) . and. the resulting
mgu(substitution, variable bindings) is ({x\z, y\a}. Then the second
goal B(x) is called. The actual goal is B(z) because the value of x
is z. This goal immediately succeeds by unification with B(a)<-. mgu
{z\a} is produced. The total substitution obtained up to this step is
{x\z, y\a}*{z\a}(* denotes substitution composition). Thirdly C(y)
is called. The actual goal is C(a). But since there is no input
clause whose head is unifiable with C(a), backtrack occurs. According
to NB, we return to the most recent step where B(a)<{- was selected and

retry the input clause B(b)<{- as an alternative.

146

{-A(x,y),B(x),C{y) ...AND-goal

A{z,a)<-

A(z,b)<-

B(a)(—

B(b)<- X,y,z are variables.
C(b)(— ~ a,b are constants.

fig. 1 A simple example of a program

This selection is destined to-fail. The reason is that since
the cause of the backtrack —- the value <a)> of the variable <{y> —- is
not elimiﬁated, we will again reach the step of unifying C(a) with
C(b)<- sooner or later. If we want to avoid the double occurences of
the same failure such as unifying C(a) whith C(b)<-, we must retry the
step where the vaiable {y> is bound to thé constant <a>, i.e., whére

the goal A(x,y) is unfied with A(z,b)<-.

Based on these observations, several intelligent backtracking
" methods (IB for short) have been proposed which analyze the cause of
failures and decide what to do at the next step to avoid repeating the

failure. -

IB generally does not return steplby step but skips 6ver several
steps at a time. In other words it cuts off OR branches of the proof
search tree.” Therefore the problem of IB is to insure that proof
paths skipped over actuaily do not lead to a solution. If proof paths

are cut off carelessly, we may lose the chance to find a solution.

Let us'call such a backtracking method safe that cuts off only
those paths that never lead to a solution. There are several
Jiteratures on IB[11[3][4], but they concentrate on the efficiency of
IB, and have 1little consideration for safeness of their backtraking

methods.

We pursue a backtracking method which is both intelligent and
safe. We first define the proof search tree (search space)

associated with the given Prolog program and goal clause.

147

2. PROOF SEARCH SPACE
In order to define IB without ambiguity, we need . a description of
the behavior of Prolog foru the given program (Horn set, without 'cut'

and 'not' for the time) and goal clause.

The computation process of Prolog can be seen as a transition of
a AND-goal. Every AND-goal in the process is represented by a pair,

the template(skelton) of the goal and the substitution.

In what follows, L,M,N... represent goals(literals). Cl ,
E> s 'J ... Represent sequences of several goals, i.e., AND-goals.
fl/ s é} , /A{ ... Represent substitutions. E o Represents the

application of ‘A To a expression E.

If the initial AND-goal is C(, Then it is = represented as
< c(, , e>(e denotes the null substitution). Suppose that the
AND-goal becomes Lol , 59 1%*.,.% [9 i-1> after i-1 resolution
steps. The actual AND-goal is L OL @ 1%...* ([i-1 and the next
goal(conjunct) to 'solve is L A 1x...% é?i—l because goals are
solved in left-to-right order. Also suppose that an input: clause
M<- EB is selected and renamed whose head is unifiable with
L é? 1*;..* [9 i-1. Let the mgu(most general unifier) of M and
L é? 1*...* 4O i-1 be G i. After the i-th resolution step, the
AND-goal becomes < ﬁ% s X, é; 1%...% £ i>. é 1,..., & I
are called substitution factors. If the template part of the~AND—goélr
becomes empty, i.e., <<, E; >, the computation halfs»and the proof

successes. Then the answer substitution is é? .

The proof process described so far corresponds to tracing. some
branch of a proof search tree(search space, see fig. 2). Each OR
node si represents an AND-goal and is labeled by the template of the .
goal(conjunct) at si. The directed edge ei indicates the literal
pair, the goal and head of an input clause to resolve‘upon!‘ The
resulting mgu is représented by é? i. The number of edges Show the
possibilities of resolution. A proof search tree 1like f‘ig.v~ 2 is
easily obtained from the connection graph of the Prolog program and

initial AND-goal.

148

search order

...... \
. ' . \
‘ L1 Ll—; Li N
;I—>@“;§ ';? @“‘:;
B 1 ./
—-->. ‘——)..

fig. 2- Proof search tree

We trace such a proof search trée in a 1eft—to—right, up-down
order. Resolutions(unifications) are performed when we go though
edges. If the unification failed, we 1label the edge by an - asterisk.
A proof terminates when we reach the node where the AND-goal is empty.
It is labeled by] (null clause) and called an end node. The total
path from the starting node to the end node is called a solution path

or. simply a solution.

—-=>%*(failure)

——>% vI--—>* '--—>*

fig. 3 Solution path

If every path through a node s has failed,b
backtrack’starts. we need some definitions before
going into the details of the intelligent
backtracking method.

3. DEFINITIONS
Def. 1 : < introducing point of a goal template >

For a goal template L to be resolved upon at some node s, there
is an ancestor node s' of s where L is introduced to the goal template
for the first time. We call s' the introducing point of L and

represtnt s' by intro(L).

We notice two facts.

(F1) For every solution path through the introducing point of L, there

must be a node labeled by L. This is obvious because any

goal(template) of the AND-goal must be resolved upon until it

w

succeeds.
(F2) Let t,t'... be descendent nodes of intro(L) labeled by L. The
partial proof search trees with top node t,t'... are the same since a

search tree depends on‘only the template of the AND-goal. Suppose the
AND-goal at intro(L) is < B ;L; oL, G1x...+ 5 i>. Then
AND-goals have the form <L oL , B 1. .x 6 i*/{) at t, t'...
.(/{ is the composition of several substitution factors énd depends on

£, t'...)

Def. 2 : (< faiiuré of édge >

Ir the’resolution(unificétion) indicated by an edge e does not
success, we Say thét the edge e failed directly. If the rgspiﬁtion
succeédéd»temporarily and a subsuquent search found no’ Splution

through e, then we say that the edge e failed indirectly.

Def. 3 : < failure of node >

If all edges froﬁ a node s faiied directly, we say that s failed
~directly. If there is at least one edge that indirecfl& failed and
the other edges féiled direétly or indirectly, we say that S failed

indirectly.

Note that the first backtraking = is caused by the direct : failure

of some node. = Fig U4 depicts the failures of a node.

N ——%

G- |- > e > —|-——- >*
e

—— D% D%

(indirect failure of a node s and an edge e)

fig. U4 Failed node

150

4., INTELLIGENT BACKTRACKING AT THE DIRECT FAILURE
Since the first backtracking is due to the direct failure of gz

node, we treat the case of direct failure first.

When an edge e fails directly, the failure often depends on - the
subset of the previous unifications. To put it differently, the edge

e was destined to fail at some previous step.

Def. 4 : < agent(e) of direct failure of an edge >

Suppoée that an edgé e incident with a node s failed Vdirectly.
Let { Li,..., 2k (k >=0)} be all of the substitution factors
referred to at. s by UA(unification algorithm, we assume Robinson's
unification algorithm[2]) to perform the unification indicated by the
edge e. { jl,l,}.., fl,k} contains the substitution factors
referred to for 'occur check'. We call this set of substitution
factors the agent'of the direct failure of the edge e and represent it

by agent(e).

Def. 5 : < occurence point of a prefix for a set of substitution
factors > k »

For a set of substitution factors S ={ A21,..., Ak (X
>= 0)} included in the substitution part of AND—goal‘at a node s,
there is the farthest ancestor node s' where S is included in the
substitution part <})> of the AND-goal at s'. We call <) > the prefix
for S and s' the occurence point of S. If k.= O then s'-is the top
node of the proof search tree. Or else the AND-goal of s' has the
form <¢ , ... k. '

Def. 6 : < det(e) of the directly failed edge e incident with
a node s labeled by a goal template L >
det(e) is defined as the most recent node of s in the occurence
point of agent(e) and intro(L). det(e) has the form <...L..., V*} ">

where is the prefix for the agent(e).

At det(e) we can foresee the direct failure ofan edge e. The

reason is as follows:

Suppose that the edge e indicates the unification of L with the
head M of some input clause. Let agent(e) be { 2U1,..., “A_ k}
and be the prefix for agent(e). The direct failure of e means that
L A1%...% - 77k is not unifiable with M. ‘Accordingly LY is not

unifiable with M either.

If we follow a path from det(e) or its descendants, we

inevitably pass through e again by (Fl) and (F2). At that time

151

AND-goal must have the formm <LOL , Y %) '>. Although the edge e
indicates the unification of LY *V' with M, it' necessarily fails

because LY is not unifiable with M.

Following form this, we can define det(s) for a directly failed

node s where the failure of s is already inevitable.

pef. 7 : < det(s) for a failed node s >
Let {el,...en} be all nodes incident with s and suppose that
every ei failed. det(s) is defined as . the most recent node of

{det(el) ... det{en)}.

There is no solution path >through det(s) or its descendants.
For any solution path must go fhrough one of failed edges { el,...,en
} by (F1) and (F2). Therefore our intelligent backtracking method

should skip over det(s) or its descendants.

If we return back to the parent node of det(s), at least one of

the bindings that caused the. failure of s is eliminated. Therefore,

Def. 8 : < btk(s) for a failed node s >
When a node s failed, the backtracking destination btk(s) is the

parent node of det(s).

Def. 9 : < agent of a fajled node s and det(s) >
Suppose that édgés {el,...,en} incident with a node é ‘failed.

We define agent(s) and agent(det(s)), by

agent(s) = agent(det(s))

{agent(el)... agent(en)}

Obviously det(s) is the most recent node of the occurence step
of agent(s) and intro(L) of the goal template L at s. The next facts

hold with respect to a failed node s and det(s).

(F3) Let { Al,..., “Ak (k >= 0)} be the agent of a failed node
s =< CL , V>. If a node s' can be represented as < OJ , VD
and y' dincludes { ‘A 1,..., Ak}, there is no solution path
through s'. Therefore no solution path contains det(s) or its

descendants.

(F4) Suppose that a node s failed'and det(s), btk(s) are defined
respectively. If the substitution factor “)_ obtained by the edge

from det(s) to btk(s) is included in agent(det(s)), A the is most

152

recently obtained factor in agent(det(s)). The substitution part)/’
at det(s) is represented as)/ =))'*7), for some substitution j)'

.. \
\
search order ' /
< /
’ === el
==)% ===)>% ===),
(s) (s) - :
k(s det(s
» . LOL, VYD
: en
—> L T
> e,
A, ey

is a prefix for agent(s) = agent(s')
Dotted lines stand for OR branches skipped

over by intelligent backtracking.

fig. 5 The relationship among. directly failed
node s, det(s), btk(s)

5. INTELLIGENT BACKTRACKING AT THE INDIRECT FAILURE

In this section we discuss indirect failures. We assume that F3
and FU4 are true of every failed node previous to an 1nd1rect1y vfalled
node s. Note that F3 and F4 hold for the flrst falled node(dlrect

failure node).

Def. 10 : < agent(e) and det(e) for a indirectly Tfailed edge e >
Suppose that an edge e incident with a node s labeled by a goal
template L failed indirectly. e connects s with * its son s'. If we
need to start backtracking at s, s' already failed and must be
-dét(s'') for some previously failed node s'f and s is btk(s''). Since
we are interested in the - backtracking at s, we consider s and s' as
su¢h. Therefore agent(s') is already defined. F3, Fl4 are true of s'.
Let é; be the substitution factor obtained by the unification

indicated by the edge e.

(1) agent(s') = {} : In this case the cause of failure of s' is the

existence of the AND-goal template of s'. We define,

agent(e) = {}

153

det(e) = intro(L).

(2) agent(s') =\= {} and é’ is not included in agent(s') : é/ Is
not reponsible for the failure of s'. Therefore,
agent(e) = agent(s'),
det(e) = the most recent node in the occurence
node of det(s') and intro(L).
(3) agent(s') =\= {} and f; is included in agent(s') : Let
agent(s') be { AL 1,..., Ak} and Lk be the most recently
produced substitution factor in agent(s'). é? is Ak since FU
holds for s'. Let {/41,...,/41 (1 >= 0)} be the substitution factors
referred to by UA to produce L k. {/{1,...,}&1} excludes the
substitution factors referred to b& UA only for 'occur check'. This
is Dbecause in order to produce Ak successfully, only

{/&1,...,/{1} is needed(details omitted).

agent(e) = { ALlyee., A k-1, My 1)

det(e) = the most recent node in the occurence

node for agent(e) and intro(L).

We complete the definition of agent(e) and det(e) for an
indirectly failed edge e. Every proof search process starting at
det(e) or its decendant nodes must pass through the edge e if it
succeeds. But the unification indicated by e always fails.(pfoof
omitted. It is based on the assumption that F3, F4 is valid for

every node that already failed directly or\indifectly)

As for agent(e) and det(e) of the directly failed edge e, . they
are already given by def. U4 and def. 6. Thus agent(e) and det(e) are
defined for every failed edge incident with an indirectly failed node
s. det(s) and btk(s) for an indirectly failed node is given by def.
7 and def. 8 respectively. agent(s) and agent(det(s))‘ for an
indirectly failed node s is given by def. 9. Note that F3 holds for
an indirectly failed node s and det(s) and FU4 for det(s) and btk(s)
again. Thus based on the induction on the number of failures, we can
be sure of the safeness of our backtracking method giveﬁ by from def.

1 to def. 9.

6. MISCELLANEOUS MATTERS
In order to apply our intelligent bactracking method to a real

situation, some modifications are needed.

154

a) false failures

Qur backtracking method is not applicable to failures other than
the ones caused entirely by variable bindings. Consider a backtrack
containning 'cut'. When such backtrack occurs , our intelligent
backtracking method is not applicable since the information abogt
variable bindings expected to Dbe obtained from the skipped paths is
lost. Similarly when a user forces a failure to get another answer,
this failure is not ascribed to variable bindings. We call such
failure a false failure. When we start backtracking at a failed
node s and at least one of the failures of s is a false failure, we

are compelled to adopt NB(details omitted).

b) 'not' : Safeness of our backtrécking method is not insured with
respect to failures containning a goal 'not(P)' because even if a goal
not(P) occurred and P succeeded, the further instantiated P may fail.
But if P in 'not(P)' is -ground, this is not the case. Therefore,
when 'not(P)' failed and P is ground, our method is applicable to this

case.

¢} prevention of the same failure : .

Our backtracking method redoes the only one variable binding.
Therefore if a failure of an edge e is due to multiple variable
bindings, we are in danger of failing again at e. To avert such
danger we have only to avoid passing through the edge e unless we

return to the ancestor node of det(e).

d) implementation »
Records needed for intelligent backtraking are;
(1) intro(L) for a goal template L
(2) agent(e) for a failed edge
(3) the substitution factor(mgu) for a successful edge and the list of

~

the substitution factors referred to by UA.

In order to implement our method, we add a step -identification
number to a variable cell when variable binding occurs. For example,
if a variable <{x> gets its value <a> at N-th step, the record is zx,
N, a>. But since recording a step number in a variable cell consumes
extra bits and the number of total steps of a proof is unpredictable,
we will records the step number block by block. This means that we
assign 1 to the first 5 steps and assign 2 to the next 5 steps and so
on. Thus we can save bits for recording a step number to avoid '"step

number over flow".

Our backtrack method could be more intelligent if we built our

backtracking theory based on 'substitution conpoment' instead of

155

'substitution factor'. MGU produced by Robinson's wunification
algorithm has the form {x1\tl}*...#*{xn\tn}. Each {xi\ti} is called
substitution component. Since failures depend not on a mgu as a whole
but on some substitution components. of the mgu, we can develop
intelligent backtracking - theory based on the dependencies of
substitution components which 1is completely in parallel with our
method presented here. The resulting backtracking method, however,
will be impractical because of the expense of book keeping for
dependencies of substitution components. Therefore we did not discuss

such backtracking methods.

7. CONCLUSION
S

We have propséé an intelligent backtracking method based on a
search proof tree obtained from the connection graph of a Prolog
program. Although our method is assured to be safe, i.e., never.
overlooks a solution path, it only points out the step from which the
retrial of an altenative search may succeed. It can not indicate a
promising step to return. Thefefore further refinement of our
intelligent backtracking method should enable it to consider

‘possiblities of success as well as safe.

ACKOWLEDGEMENT : The auther is grateful to Dr. Tanaka, Chief of
Machine Inference Section of Electrotechnical Laboratory and other

members of the section for helpful discussion.

' REFERENCES
[1] Bruynooghe, M. :“Analysis of Dependencies to Improve the Behavior
Logic Prolog", 5th conf. on Automated Deduction, Lec. Note
in Comp. Sci. Springer, 1980.
[2] Chang,C.L. and Lee,R.C.T. :"Symbolic Logic and Mechanical Theorem
~Proving", Academic Press, 1973.
[3] Pereira,L.M. and Pofto,A. : "Selective Backtracking for Logic
programs"”, 5th conf. on Automated Deduction, Lec. Note in Comp.
Sci. Springer, 1980.
[4] Lasserre;C. and Gallaire,H. : "Controlling Backtrack in Horn
Clauses Programming", ACM Logic Programming Workshop, Budapest,

1980.

