goooboooogn
0 4820 1983 0 183-214

183

MULTI-VERSION CONCURRENCY CONTROL SCHEME
FOR A DATABASE SYSTEM — VERSION T —

Shojiro Muro (Kyoto University)
Tiko Kameda (Simon Fraser University)

Toshimi Minoura |
(University of Southern California)

Abstract

We presénﬁ a milti-version concurrency control scheme fbf a
centralized database system, which allows increased concurrency.
Tt grants an appropriate version to every read request without causing
inconsistency. Transactions issuing write requests which would cause
inconsistency are aborted. We staté precisely when old versions can
be discarded and describe ﬁn detail how to eliminate the effects of an
aborted transaction. This paper is based on the notion of V-seri-
alizable execution which preserves consistency. We show that any
"D-serializable" schedule of Papadimitriouv(of "eonflict-preserving”
sertalizable schedule of Bernstein, et al.) is a special type of V-
sertalizable execution and that even some non-serializable .schedules
can be turmed into a V-serializable execution without changing the

order of operations. 7
Presénted at RIMS, Kyoto Unﬁrsity, June 25, 1982
Muro Shojiro 'Jg 2 7{3‘ EP

Ke.lmeda Tsuner.n'lfo ?B\ I_E_ iz
Minoura Toshimi Jm m%

This paper is based on [MURO-82]. This work was partially supported by
the Natural Sciences and Engineering Research Council of Canada under
Grant Nos. A5240 and A4315.

Authors’s addresses: S. Muro, Dept. of Applied Mathematics and Physics,
Faculty of Engineering, Kyoto University, Kyoto 606, Japan; T. Kameda,
Dept. of Computing Science, Simon Fraser University, Burnaby, B.C. V5A
1S6, Canada; T. Minoura, Dept. of Flectrical Engineering-Systems, .Univ-
versity of Southern California, University Park, Los Angeles 90007, U.S.A.

-1 -

184

1. Introduction

In a typical database system, many users access shared data
concurrently. Unless some kind of discipline is imposed on user
transactions, data in the system may be modified in an unintended way.

The reader is referred to [GRAY-78] for anomalies that may occur.

A concurrency control mechanism should realize a high level of

concurrency without causing inconsistency due to undesirable inter-

actions among transactioms. Many schemes for concurrency control
have recently been proposed [BAYE-80, CASA-81, KUNG-81, PAPA-79, SCHL-
78, STEA-76]. Earlier concurrency control schemes [ASTR-76, ESWA-76,

STON-76] are mostly based on locking.

fhe idea of using multiple versidﬁs of objects in a database
system was proposed in [STEA-~76]. If we keep multiple versions of
each object, there is more likelihood of being able to grant write
requests. that have arrived "too éoon", since we can save older versions
. for future read requests. Consider the following schedule [ESWA-761]:

W1[X]R2{X]W2[Y]R1[Y],

where Ri[X] and Wi[X] respectively denote a read and write operation‘
on object X by transaction Ti. Since T2 reads the value of X from
Tl and Tl reads the value of Y from T2, the above schedule is not seri-
alizable [ESWA—76j§‘ The frobiem here is that WQ[Y}' arrivesvtoo
 soon, i.e., before R1[Y]. If we keep!the initial value of Y as well
as the new value written by W2[Y], R1[Y] can access the old value,

and the execution now becomes "serializable".

A family of multi-version concurrency control schemes were investi-
gated in [STEA-76]. They also present a number of important concepts

and results.

185

Bayer;etal.[BAYE—80]andKessels[KESS—SO]took noticeofthéfact
that moét détabase systems maintain two versions, the old version and
the new version, of each. object for recovery reasoﬁs while aﬂfrans—
action is modifying. it. In the concurrency coﬁtrol scheme of [BAYE-
80], a read requesflby a transaction is always granted without causing
inconsisteﬁcy. A read operétion reads_eithgr the old or the new
version, depénding 0n~the state 6flthe object with respect ﬂaupdating.

This clearly increases concurrency.

Réed [REED;79] has:élso ﬁroposed a multi-version géncurréncy
céntrol écheme for distributed détabases‘ﬁasedﬂon time;sﬁamping.
This éaﬁ éf‘cbﬁrée be Qsed in a centralized dafébasé system. However,
if imposééba "sefialization order" too early in the game, thus pro-

hibiting some allowable executions.

Papadimitriou and Kanellakis [PAPA-82] examined the problem of
concurrency control when,the (ceptralized)‘détébaéeAmanagement‘system
supports the mpltiple;versioﬁs of data. Théy"characterizedfhelimit
Qf parallelism achiévable by the multiple versions épproacheuuidemon—

strated the resqlting space-parallelism tradeoff.

In Section 2, we describe the model of a datgbase system used in
this paper. It is similar‘to the model used by Stearns, et al.
[STEA-76], but we do not assume that a transaétion must read an object
in 6rder to update it. Also, unlike their modél'ﬁe<k3allow versions

created by an unterminated transactioh to be read by other trans-

actions. This allows further concurrency. As in [PAPA-79] we
allow each transaction to make at most one read access and at most
one write access to each object, but unlike [PAPA-79] we allow read

(and similarly write) operations to be performed at different times.

186

Section 3 introduces a useful tool called the history graph

which represents the "history" of an execution. History graph is

used in defining the V(version)-equivalence among executions. The

V-serializability is then defined in Section4 based on this equiva-

lence. The V-serializability is a generalization of "conflict-
preserving" serializability [BERN-79] or '"D-serializability" [PAPA-

79] to the multi-version case.

In Section 3, we present our multi-version concurrency control
algorithm (Algorithm MV) which schedules operations of user trans-
actions by maintaining and updating relevant subgraphs of the history

graph and dependency graph [ESWA-76]. © One or more transactions are

aborted if a write operation would create a cycle in the dependency
graph. We prove that a read operation is always granted (i.e.,
there always is an appropriate version to be read without causing
inconsistency) . This is non-trivial, whereas a similar result in
[CASA-81] (see also the "certification method" [BERN-81]) is more
straightforward, since in his model a transaction consists of two
steps, a read followed by a write, and atomic read of several objects
cannot cause inconsistency. Finally in Section 6 we prove that

Algorithm MV preserves consistency.

Our main contributions in this paper consist of the following.

1. Extension of the model in [STEA-76].
. A transaction can update an object without first reading it.
We also allow versions written by an unterminated transaction

to be read by other transactions.

187

2. Definition of V-serializability.

This is an extension of the notion of "

conflict-preserving"
serializability [BERN-79] and "D-serializability" [PAPA-79]

to the multi-version case.

3. Introduction of history graph.
This graph faithfully records the history of execution, enabling
partial back-outs. The graph can be embedded in the database

itself, incurring little space overhead.

4. A concurrency control scheme based on the history graph and the
dependency graph.
We clearly indicate when transactions can be commited and old
versioﬁs can be discarded. We also give a clear exposiiioﬁ of
how to abort a transaction and how the effect éf an abértion

propagates, necessitating abortion of other transactions.

5. Discussion of 'check-point" transactions [FISC-81].

Finally we comment that a practical multi-version database
system based on time stamping has recently been built [DUBO-821],
and experience with it indicates that keeping multiple versions

can be practical in terms of time and space overhead. -

This paper is a completely overhauled version (version 1) of

our earlier report (version 0) [MURO—Sl].

188

2. Database System Model and Execution Sequence 4

' In this section, we shall describe the database system model

used in this paper. A database system consists of a set D of

objets (or data items), a set T = {T1, T2,4..., Tn} of transactions,

and a scheduler. A transaction starts with BEGIN and ends with
TERMINATE. Other steps of a transaction are a sequence of read and

write operations. A read operation Ri[X] of transaction Ti returns

a value (or a version, see below) of object X, and write operation

Wi[X] of transaction“Ti creates a new value for X. Each object
is accessed by at mosf one read and at most oﬁe’write operaﬁion of
e;ch transaction. If a transaction Ti both rea&s and writeé an
vobject X, Ri[X] precedes Wi[X] in Ti, since Ti need not read what

it has written.

A database state is an assignment of a value to each object

in D.- Some st#tesvare designated as consistent and the rest as
inconsistent [ESWA-~76]. The scheduler does not know which states
are consistent, but it assumes that a transaction executed alone
maps 'a consistent state into a consistent state. The initial
database state is assumed to be consistent. We say that trans-
actions execute concurrently if the operations of the transactions

are interleaved.t

In order to avoid concurrent execution of transactions which

renders the database state inconsistent, execution of some read

+ We assume here that the execution intervals of the operations
accessing the same objects do not overlap, but other operations

may overlap in time.

189

and write operations may have to be delayed or rejected by the

scheduler of the system. A concurrency control algorithm is the

specification of a scheduler.

For each object X, its initial value is defined to be version
0, and a new version of X is created by each succeeding write oper-—

ation accessing X. . The version number of a value of object X

created by write operation Wi[X] is denoted by #(Wi[X]), and is

strictly larger than/the version number of the previous version of
X. The version number of a value read by read operation Ri[X] is
denoted by #(Ri[X]). The version number will be discussed below

in more detail.

Let OP(T) denote the set of all read and write operations of

the transactions in T. An execution for T is defined as follows.

- Definition 2.1. An execution for a set T of transactions is

a triple (OP(T), <<, #), where << is a total order on the operations
in OP(T) and # is a mapping from OP(T) to the set of nonnegative

integers.

Let e = (OP(T), <<, #) be an execution. For two operations
A and B in OP(T), we say that A precedes B in e if A<<B. Intui-
tively, << represents the time ordér among the operations in OP(T).t+
In the folléwing we use two different representations for an exe-

cution. The linear representation, to be described in this section,

is more convenient for representing the total order << clearly.

+ 1If the execution intervals of two operations overlap, the oper-

ations are ordered according to their initiation time.

190

However, it does not represent complete information about the

mapping f#. The second representation, the history graph, introduced

in the next section loses some information about the order <<.
We leave a formal definition of the linear representation to the

reader, and simply indicate it by an example.

Example 2.1. An execution (OP(T), <<, #) may be represented

by the sequence

Rl[X]RZ[Z]Wg[X]Wl[Z]R3[Y]R%[Z]Wé[X]ﬁ}[X]W3[Z]W2[Y].

The total order << is represented by the order (left to right) in
which the operations of OP(T) appear. The arrow from W3[X] to
R2[X], for instance, indicates that #(W3[X])=#(R2{X]), i.e., T2
reads the version of X written by T3. Note that the actual version
numbers (which are not essential) are not shown in this represen-
tation. I1f there is no arrow leading to a read operation (such as
R3[Y]), it indicates the read operation reads the initial version

(i.e., version 0). []

_For stating some definitions and theorems, it is convenient
to introduce the fictitious "initailizing tramsaction", TO. It
is a write-only transaction which writes version 0 of each object.
All (write) operations of Té pfecedes all operations of the other
transactions and we do not explicitly show these write operations.

We define . #(WO[X])=0 for all objects X.

Given an execution (OP(T), <<, #), the following rules govern

the relationship between the mapping # and the order <<,

V1. If Wi[X]<<Wjf{X] then #(Wi[X])<#Wi[X]).

V2. For each read operation Ri[X], there exists a

)

131

write operation Wj[X] such that Wj[X]<<Ri[X]

and #(Wj[XD=#Ri[X]). ' X

Informally, rule V1 says that the version number be incremented
each time an object value is updated. Note that in rule V2 above,
there is at least one write operation, i.e., WO[X], that precedes
Ri[X]. Rule V2 i&plies that a read operation accessing an object
must return the version created by a write operation preceding that
read operation. It follows therefore that if Ri[X]<<Wj[X] then
FRI[XD<#M@WI{X]). Note: that more than one read operation may

access the same version.

Version numbers are important in so much és they define a
total order for the versions of each object and provide index for
referring to different version. » :Therefore.without loss of gener-
ality we may assume that they are consecutive integers starting at
0. This is automatically accomplished by referring to the jth

version of an objéct, where j = 0,1,2, ...

There are certain executions with a pleasing property that

the version numbers are implicitly defined by the order <<.

Definition 2.2. An execution (OP(T), <<, #) is said to be

normalized if
a) the version numbers of each object are consecutive

integers, and

b) if Wi[X]<<Rj[X] then #(Wi[X1)<#(Rj[X]).

Condition b) above requires, intuitively, that each read oper-

ation in a normalized execution read the '"most recent" version of

the object it accesses.

192

A normalized execution can be interpreted as an execution in
the’conventional "single-version" database. In fact the linear
repreéentation is a conventional way of representing such an exe-
cution [BERN-79, PAPA-79]. Arrows are omitted because it is under-
stood that each read operation reads the result of the "most recent"

write.

3. History Graph and Version-Equivalence

-In this section we infroduce the second,‘graphical represen-
tation for an execution.’ This graph will play a key role in the
subsequent discussion. Let e = (OP(T), <<, #) be an execution
and let D(T) denote the set of objects accessed by the operations
in OP(T). In order to represent e, we construct a labelled bi-

partite graph, HG(e) = (N,A), called the histofy graph, where N and

A are the set of nodes and set of arcs, respectively. Intuitively,
for each transaction Ti in T, HG(e) represents the versions

accessed by Ti. N consists of the following nodes.

N1: For each transaction Ti in T, there is a node
("transaction node") with label Ti.

N2: For each pair [X,v] such that X is in D(T) and v (=0) is
the version number of a version of X, there is a node

("version node") with label [X,v].

The arcs in A are given as follows, where an arc (a,b) is

directed from node a to node b.

Al: ([X,v], Ti) e A iff #(Ri[X])

1]
A

]
s

A2: (Ti, [X,v]) € A iff #(Wi[X]) .

As we mentioned in Section 2, we may assume without loss of

- 10 -

193

generality that for each object X, its version numbers are consecu-
tive integers starting at O. This we assume in the rest of this

section.

Definition 3.1. For a set T of transactions let e and e" be

two executions. e and e' are said to be V—eguivalent,'written’

e = e', if HG(e) = HG(e').

Suppose e = (OP(T), <<', #') is V-equivalent to e' = (0P(T), <<',
#). Then Ti writes the jth version of an object X in e, iff Ti
writes the jth version of X in e'. Similarly, Ti reads the jth

version of X in ‘e, iff Ti reads the jth version of X in e'.

Lemma 3.1. Let e'= (OP(T), <<', #') be an execution for a set
T of transactions such that the version numbers for each object
are consecutive integers. There exists a normalized execution

e = (OP(T), <<,-#) for T such that e and e' are V-equivalent. .

Proof: Start with e = e', i.e., << = <<' and # = #'. if
read operation Ri[X] in-e does not access the version generated by
the immediately preceding write operation of the form Wj[X] (Wj[X]<<
Ri[X]), then brihg Ri[X] forward in the linear representation of e
to just before Wj[X], i.e., let Ri[X]<<Wj[X]. Repeat this process
‘until no such Ri[X] exists for any i or X. The resulting sequence
represents the desired normalized execution e. Clearly we havei
HG(e) = HG(e'").

Q.E.D.

The above lemma provides an important link between the V-
serializability introduced in the néét section and "conflict-
presefving" serializability EBERN—79] or "D—seriélizability"

[PAPA-79]. This point will be discussed later in more detail.

- 11 -

194

The V-equivalence 6fvtwo executions can be determined efficient-
ly. For each i we can check the nodes adjacent to Ti in HG(e) and
HG(e') in O(ID(T)I)* time, because Ti has at most one read and one
write operation accessing each object. Hence the V-equivalence of

executions can be tested in O(|D(T)||T|) time.

4. Serializability and V-serializability

Serializability [ESWA-76] of an execution is widely accepted

as a useful notion. However, Papadimitriou [PAPA-79] has shown
that serializability test is NP—complete'[GARE—79], even for his
simple transaction model, which implies that it is impractical to
employ it in the actual implementation. Sufficient conditions for
serializability which can be tésted in polynomial time have been
proposed [BERN-79, ESWA—76, KELL-75, PAPA-77, PAPA-79]. In this
section we extend some of these ideas to the multi-version environ-

ment.

Definition 4.1. A normalized execution e=(0P(T), <<, #) is

called serial if there is a total order <<< on the set T such that
for any two distinct transactions Tl and T2 in T, if A<<B then

T1<<<T2, where A (B) is any operation of T1 (T2).

In the linear representation of a serial execution, all oper-
ations of each tramsaction appear consecutively, and there is an
arrow to each read operation from the nearest (on the left) write

operation accessing the same object.

Definition 4.2. An execution e = (OP(T), <<, #) is said to

be V-serializable if there is a serial execution .e' = (0P(T), <<',

#') such that e = e’.

+ For a set A, |A| denotes the cardinality of A.

- 12 -

135

Remark. As mentioned in Section 2, a normalized execution can

) be interpreted as an execution for a conventional or "single-version"
database. In this connection, it turns out that every '"D-seri-
alizable" schedule [PAPA-79] or "conflict-~preserving' serializable
schedule [BERN-79] is é normalized V-serializable execution.T
However, the converse is not true, since our transaction model is

‘more general than theirs in that we allow a read operation to follow

a write operation in a transaction.

This observation has the following important implication.
Consider a V-serializable execution e that is not "D-serializable"
(see Section 1 for an example of such anvexecutioﬁ). If e is
given to a '"D-serializing" scheduler or the "CPSR-scheduler” [CASA-~
81], some operations will be either delayed or rejected. However,
a "V-serializing" scheduler would accept all operations of e without

delay or rejection, which means increased concurrency. [

We now davelop a method for testing V-serializability of an
"execution. For ‘a set of transactions T = {Tl, T2, ..., Tn}, let
e = (OP(T), <<, #) be a given execution. We construct for e a

directed graph DG(e)=(T,B), called the dependency graph [ESWA-76].

The set of arcs of DG(e), B, is defined as follows:

(Ti, Tj) € B iff any of the following conditions holds for

some X ¢ D(T).

1. (ww-conflict) There>exist two operations Wi[x] and Wj[X]
in OP(T)GSuch that #(W3i[X]) is the next larger version
number after #(Wi[X]) (or #(Wj[X] = #(Wi[X])+1, if the

version numbers for .each object are comsecutive).

T We assume here that a read (write) operation of the model in
[PAPA-79, BERN-79] is changing into a sequence of consecutive read

(write) operations, one for each object in the "read (write) set."”

- 13 -

136

2. (rw—conflict) there exist two operations Ri[X] and Wj[X]
in OP(T) such that #(Wj[X]) is the next larger version
number after #(Ri[X]) (or #Wj[X]D) = #(Ri[X])+l,/if the
version numbers for each object are consecutive),

3. (Dependence) there exist two operations Wi[X] and Rj[X]

in OP(T) such that #(Wi[X]) = #(RJ[X]).

A%
We--call arc (Ti, Tj) ¢ B a primary arc if codition 3 above

holds. cher arcs are called secondary arcs. Now let e be a
serial execution as defined in Definition 4.1, and let Ti<<<Tj

for Ti, Tj € T. Because of the rules V1 and V2 in Section 2, an
arc between Ti and Tj in DG(e), if any, muét be directed frdm Ti

to Tj. Recall that rule V2 implies if Ri[X]<<Wj[X] then #(Ri[X])<

#WiIXD. It follows that DG(e) cannot have a cycle if e is serial.

Lemma 4.1. Let T = {Tl, T2, ..., Tn}, and let e =(OP(T), <<,
#) and e'= (OP(T), <<', #') be two executions. If HG(e) = HG(e'),

;hgn DG(e) = DG(e'").

- Proof: 1If -HG(e) = HG(e'), then each operation has the same
version number in both e and . e’. It follows from the definition
of the dependency graph that DG(e) and DG(e') have the same set

of arcs (as well as the same set of nodes).

Q.E.D.

Lemma 4.1 is true even if the version numbers for each object
are not consecutive integers; We now prove an important theorem.
Theorem 4.1. An execution e is V-serializable if and only if

DG(e) is acyclic.

Proof: First assume that e is V-serializable. Then by defi-

nition, there is a serial execution e' such that e = e'. By Defi-

- 14 -

197
nition 3.1, we have HG(e) = HG(e') and thus DG(e) = DG(e') by Lemma

4.1. Since e' is a serial execution, DG(e) = DG(e') is acyclic.

In order to prove the "if part" of the.theorem, we assume
that DG(e) is acyclic. Let Tp(l)<<<Tp(2)<<<... <<<Tp(n) be a

total order obtained by topologically sorting [KNUT-73] the set

{T1, T2, ..., Tn} oﬁ nodes of DG(e), where p(.) is a permutation.
Note that if i<j‘thén there is no path from Tp(j) to Tp(i) in DG(e).
For each i (lSiSn),'let e(i) be the éequence of operatiohs'of Ti.
Concatenate these seqﬁenceé to construct the lihear representétidn
of a serial execution e', e(p(l))e(p(Z))...e(p(h)). We claim
that HG(é')= HG(e), therefore e = e' by Definition 3.1,Aand e is

V-serializable.

To prove that HG(e) = HG(e'), note first that these graphs
have the identical set of nodes (version nodesbas well as trans-
action nodes). We now show that HG(e) and HG(e') havé ﬁhe same
set of "write_arcs“. Let {T'1, T'2, ..., T'k} < T be thé'Set of
all transactions that write X such that for i= 1, 2;‘..., k,
(T'i, [X,i]) is an arc in HG(e). Then for every i with 1Si£k—1-
there is an arc from T'i to T'i+l in DG(e). Therefore we must
have T'1<<<T'2<<<};. <<<T'k as a result of topdlogical sorting and

thus (T'i, [X,i]) is also an arc in HG(e').

Next, in order to prdve fhat HG(e) and HG(e') héve the same
set of "read arcs", let T'i, .i=1, 2, ..., k, be as defiﬁed above.
Suppése in e Tj(iT;i+l) reads the ith version of X, i.e.,V([X;i],
Tj) is a "read arc" in HG(e). Then there are arcs from T'i té‘Tj

and Tj to T'i+l in DG(e), and therefore we have Tfi<<<Tj<<<T'i+l.

It follows that in e' Tj reads version i of X, i.e., ([X,i], Tj)

- 15 -

198

is also an arc in HG(e'). The case Tj = T"i+l is easy to prove.
Q.E.D.

Corollary 4.1. For a given execution e = (OP(T), <<, #), the

V-serializability of e can be checked in O(|D(T)|IT!|) time.

Proof: For each object X ¢ D(T), there are at most 2|T| reéd
and write operations which access X, according to the definition of
a transaction. Construct from the linear representation of e the
sequence of operations accessing each object X in D(T). Such a
sequence has at most 2|T| operatioms. We now renumber the version
numbers of X by consecutive integers and construct DG(e) as follows.
First intrduce the set T of nodes. For the sequence obtained for
each object X, proceed as follows. Introduce an arc (Ti, Tj) if
any of the following three conditions is satisfied (cf. the defi-

nition of the dependency graph).

1. There are operations Wi[X] and Wj[X] with
FWF XD =#FWi[XD+1,

2. there are operations Ri[X] and Wj[X] with
#(W3 [X])=#(Ri[X])+1,

3. there are operations Wi[X] and Rj[X] with

#WilXD)=#(RF[X]).

The sequence associated with each object can be processed in
o(lT]) time,.which implies that at most O(|T|) arcs are introduced
per object. Therefore the_totl number of arecs introduced is
bounded by O(|D(T)||TI|). A cycle in DG(e) can be testedvin time
linear in the nﬁmber of nodes and arcs [AHOH-74].

Q.E.D.

- 16 -

199

5. The Algorithm

In this section, we discuss the multi-version concurrency

control algorithm (Algorithm MV, for short) used by the scheduler

of our database system. The input to the scheduler is the sequence
of arriving requests from user transactions, including their BEGIN
and TERMINATE requests. The BEGIN and TERMINATE requests from

transaction Ti are denoted by b(Ti) and t(Ti), respectively.

5.1 General description

In response to each input request, Algorithm MV updates the
history graph and the dependency graph. Let HG*=(N,A) and
DG#=(N',A') respectively denote the subgraphs of the history graph
and dependency graph, Wﬁich are maintained by the scheduler.

They are iniﬁialized as follows:

N«{[X,0] | X e D}, A<9,

N'<¢p, A'<d.

Updating HG#% is straightforward and is carried out as follows

depending on the input request.

1. For BEGIN request, b(Ti):
Create a transaction node Ti.

2. For WilX]:
Create a version node [X,v], where v is one plus the
currently lgrgest version number of object X, and add an
arc (Ti, [X,v]) to A.

3. For Ri[X]:
Create an arc ([X,v], Ti) € A, where v is the version
number selected bﬁ‘the method to be described later in

this section (see Theorem 5.1).

-17 -

4. For TERMINATE request, t(Ti):
Delete node Ti and possibly one version node (per object)
together with the arcs incident on them, if Ti satisflies

the "deletion condition" (see below).

As we will see later a write fequest is not always graﬁted,
If Ti is aborted as a result of thé rejection of Wi[X], the changes
made in response to Wi[X] above must.be undone. Furtherm&re, otﬂer
operations and/or transactions may have to be backed out as a result,

as we discuss in more detail below:

Lemma 4.1 implies that all information required to construct
DG(e) is contained in HG(e). Therefore the updating of HG* de-
scribed above can be translated into the updating of DG*. The

details of the implementation of updating will be discussed later

in this section.

There are three points still left uncleaur at this point.
They are
a) When should a write request be rejected?

b) When can a transaction be "committed"?

c) Which version should be given to a read request Ri[X]?

To "commit" a transaction means to give it a guarantee that
it will never be aborted and its effiects on the database will

persist. We shall now discuss these one by one.

5.2. Rejection of write requests and abortion of tramsactions

When Wi[X] is received, both HG* and DG¥* are updated as de~-
scribed above.. If a cycle is created in DG%* as a result, then the
partial execution generated so far is not V-serializable if Wi[X]

is appended to it. That is to say, even if all currently untermi-

- 18 -

201

nated transactions immediately send TERMINATE requests, the generated
execution is not V-serializable. We reject Wi[X], abort Ti, and
undo the changes made to HG*vand DG* iﬁ responsé to all the requests
ﬁadekby Ti. Note that as a‘resﬁlt, the version numbers of some
6bjects may bécb@é‘non—éonsecutive. Furthermore, all‘transaérions
'corresﬁonQiﬁg rédtﬁé ﬁo&és:of DG*’reécﬁable from Ti by pribar&-arcs
must be abbrted;véiﬁce the§ have read the versiéns to be discarded.
This aborting process might propagate one after another. This

phenomeﬁon is ‘similar to the domino effect [RUSS-80] or cascading

[BAYE-80]. In our scheme, this is the price we pay for increased
concurrency.

Remark. Note that the procedure described above for elimi-
nating a cycle in DG* is just one of many possible ways (perhaps the
~simplest). For example, a cycle in DG#* can be broken by aborting
other,ﬁransactipnﬂs) than the Ti which issued the‘"offending" write
:Wi[X]. ~ Making Wi[X] wait is a possible option only if other trans-—
actions are aborted [STEA-76]. Otherwise, a cycle will,be created
by Wi[X] no matter how long Wi[X] waits. This is the reason- why
we abort Ti. kﬂowever, if the aborted transaction is immediately

restarted, the so-called cyclic restart [STEA-76] may'océur. For

the discussion of cyclic restart, including methods to cope with

it the reader is referred to [STEA-76]. Note alsobthat a complete
abortion may ﬁot be necessary, but a partial bécking up may suffice.
kHowever, we ﬁse aborrion for ease of exposition. All inforﬁation
needed‘for this purpoée is reaaily available in HG*;' In general,
we should salvage as many operations that have been performed as
possible. At‘ the ‘same time, the overhead for determining which

operations to back out for this purpose should also be taken into

“\

- 19 -

202

account. [J

5.3. Commit and deletion conditions.

~ : :
Let DG be a partial graph of DG*, obtained from DG* by deleting
all secondary arcs from it. Since we keep DG* acyclic, bé is a
fortiori acyclic. If there is a path from a node to another node

b in an acyclic directed graph, we call a a predecessor of b.

Definition 5.1. Transaction Ti is said to satisfy the commit
condition if t(Ti) has been received by the scheduler and all prede-

cessors of node Ti in ﬁé have been committed.

When a transaction satisfies the commit condition, the system
notifies the fact to the transaction. If we keep a record of in-
formation about all input operations forever, the total storage
space needed by the algorithm will grow out of bound. Therefore
we delete nodes and arcs from HG* and DG* that are no longer needed.
We call the transactions that are in the current HG* and DG* open
transactions [STEA-76]. We say that a node of a directed graph is

a source if it has no incoming arc.

Definition 5.2. Transaction Ti is said to satisfy the deletion

condition if node Ti is a source in DG# and t(Ti) has been received

by the scheduler.

A transaction satisfying the commit condition may also satisfy
the deletion condition. If Ti satisfies the deletion conditiom,
we delete some nodes and arcs from HG* and DG* by the rules given

below. (See Lemma 6.1 for justification.)

Cl: Delete node Ti from HG% together with the arcs incident on
it (both incoming and outgoing arcs).
C2: For each X € D such that Ti has written a version of the

- 20 -

203

form [X;v], delete the version node [X,v'] with v'< v.

-C3: Delete node Ti from DG* together with its outgoing arcs.

Suppose that among the open transactions, T'1l, T'2, ..., T'k
have written versions of X, [X,vl], [X,v2], ..., [X,vk], where
vl < v2 <...< vk. Because of ww—conflict, there is an arc (T'i,
T'i+1) in DG* for i = 1, 2, ..., k-1. Therefore they can satisfy
the deletion conditiom only in the order, T'l, T'2, ..., T'k.
If there is a open transaction T'O which read a previous version
[X,v0] with vO < vl, then there is an arc (T'O, Tfl) in DG* due to
‘rw—coflict. T'l can satisfy the deletion condition only after
T'0 has been deleted. Rule C2 makes sure that, for i =1, 2, ...,
k, when T'i sétisfies the deletion condition, the‘version [X,vi-1]
is deleted. Each time C2 is applied, exactly one version (per
object that Ti hés'written) is deleted. It is seen that versions
‘are deleted in the order they were created (unless they are deleted
with aborted transactions), and that exaclty one Vefsion node (per
object) with no incoming arc is always kept in the current HG%.

The following lemma follows easily from this observation.

Lemma 5.1. For each object X ¢ D, the only version node of the
form [X,v] with no incoming arc in HG* is either of version O or the
version with the largest version number among those written by the

transactions which have been deleted.

The above lemma is important in proving that a read request

can always be granted (see the next subsection).

There are ‘two possible ways in which a transcation newly satis-

fies the deletion condition.

a

- 21 -

204

a) The ‘scheduler receives a TERMINATE request, t(Ti).
b) A predecessor transaction of Ti in DG* has been deleted
either by rule C2 or by abortion, making Ti a source in

DG*.

In our algorithm, we delete the transactions satisfying the

deletion condition whenever. they are found.

5.4. Processing read requests.

_.1If a read operation Ri[X] is accebted by the séheduler and
accesses a versioniv of X, HG* and DG* musf be updated. Arc ([X,v],
Ti) is ;dded to HG* and arcs due to'rw—conflict and/or depéndence are
~ added to DG* .‘ Unlike fhe "éingle—vérsion" database system, the
scheduler has a choice as to which vefsion of X to allow Ri[X] to
access. Théféllowingtheorem states that we can always grént a

read request.

Theorem 5.1. When a read request Ri[X] arrives, there always
exists a version such that no cycle is created in DG#* if the version

is read by Ri[X].

Proof. Consider HG* and DG* just before the read request Ri[X]
is received by the scheduler. If there is no open transaction
that has written a version of object X, then Ri[X] can access version
v, where [X,v] is the unique node in HG¥* stated in Lemma 5.1, because

no new arc is created in the updated DG¥.

Assume now that there are k (= 1) transactions T'1l, T'2, ...,
T'k in HG* each of which has written a version of X. We denote
the nodes created by these tramsactions by [X, v1], [X,v2], ...,

[X,vk], where vl < v2 <...< vk. Note that v0 < vl, where [X,v0]

- 22 -

205

isrthe unique version node withoﬁt any ineoming arc (see Lemma 5.1).
Then there are arcs (T'i, T'2); (T'2, Tf3), eeey (T'k-1, T'k) in DG¥*.
If there ié ﬁo (directed) path from Ti to T'j for any j (1<j<k),
Ri[X] can access version vk, because no cycle is created after adding
arc (T'k, Ti)‘to‘DG*. Next, if there is a path from Ti to some T'j
“ (1< j<k), then let hbe the smallest index (1 <h < k) such that there is
a directed path from Ti to T'h. Thus if Ri[X] accesses tHe version-
'vh—l,‘thenJarcs (T'h=1, Ti) and (Ti, T'h) are added to DG*. However,
the former.éfc cannot iﬁtroduce a cycle since there is no path from
Ti to T'h-1, and the latter arc cannot introduce a cycle,sinéetﬁere
was always a path from Ti to T'h. Consequently no cycle is created

in the updated DG*.
Q.E.D.

Theorem 5.1. is an "existence theorem" and does not state how to
fiﬂi an appropriate version to grant to a read request. The most
logical thing to do would be to look for the newest version that does
not create a cycle by granting it. An open problem is how tokef-

fciently determine that version.

5.5. Implementation

Here we discuss only the implemetation of HG* which facilitates
its.updating. The implementation of DG* is straightforward. For
each object Xe D, we maintain a list of lists, both doubly linked,

named VLIST(X) (see Fig. 1). Each list in VLIST(X) is headed by a

record with four fields: version-number; value; written-by; read-by.
The first two fields are<self—explaﬁatory. The third fieid contains
the name of the transaction which wrote this version. The last .field
is a pointer to the;linkéd list of all tramsactions that have read
this version. Note that dependence exists between the ‘transaction

in the third field and those in the linked list. Similarly, ww-

- 23 -

206

conflict exists between two transactionns which wrote adjacent versions.
And finally, rw-conflict exists between the transactions which read

a version and the one which wrote the next newer version (see Fig. 1).

Although VLIST(X) for all X €D provide all information about HG¥*,
it is convenient to maintain another set of lists, two for each open
transaction. The first list, WROTE(Ti), contains the pointers to all
versions Ti has created and the second list, READ(Ti), contains the
pointers to all versions Ti has read. Actually a pointer in READ(Ti)
does not point to a version itself, but rather to the element Ti, which

is in the list of transactions which read the version.

We illustrate how the deletion of a transaction Ti can efficiently
be carried out using these data structures. First, for each element
(pointer) in READ(Ti), delete the transaction pointed to by it. Next,
for each element (pointer) in WROTE(Ti), delete the version pointed tb
by it. Dependence, ww—conflict, and rw—conflict involving Ti must be
reexamined to perform the corresponding updates on DG*. Note that
the abortion of one transaction may necessitate abortion of other trans-
actions due to the domino effect. Each of the transactions reachable

in DG* from an aborted transaction should also be aborted as above.

5.6. Special cases

There are two special cases of interest. First we consider
read-only transactions. It follows from Theorem 5.1 that a read-only
transaction is never aborted by Algorithm MV, unless one or more of
3 .) N
its predecessors in DG are aborted. Therefore, a read-only trans-—
action which reads the oldest versions in HG* is never aborted, since
. . . N 3
it is a source and has no predecessor in DG. Such a transaction can
be used as a "check~point transaction' [FISC-81] which reads a con-

sistent state of the entire database. Moreover, such a transaction

- 24 -

207

does not cause abortion of other transactions, because it cannot be
part of a cycle in DG* (it will remain a source in DG* as long as it

is open).

The second special case is not really a restriction of our scheme,
but rather a modification. It is obtained by allowing only one
version for each object. We also add an additional condition on oﬁr
transaction model that all read operations and all write operatiohs
of a transaction be each atomic and the write operations follow the
read operations in each transaction. Then we have a model similar
to the one used in [BERN-79, CASA-81, PAPA-79]. For this model, we
can show that éach read (=atomic set of read operations) can always
be granted and the implementation described in subsection 5.5 compares

favorably with that given in [CASA-81].

6. Correctness of. the Algorithm

In this section we shall prove that Algorithm MV generates only
V-serializable executions. Our approach is to make use of Theorem
4.1 for an arbitrary execution e generated by Algorithm MV and shbw
that the dependency graph DG(e) is acyclic. Note that our algorithm
deletes transaction nodes from DG* when they satisfy the deletion
condition, so that it is not obvious whether the dependency graph

would be acyclic if there were not deleted.

Let {T1, T2, ..., Tn} be the set of all transactions received
by the scheduler from the time the database system was initialized,
excluding those aborted by the scheduler and removed from the system.
Without loss of generality let T1, T2, ..., Tm, where m<n, be the

transactions which satisfied the deletion condition up to the present

- 25 -

208
time. In the current DG* we thus have only the nodes corresponding
to the open transactions, Tm+1, Tm+2, ..., Tn. Thgse transactions
are still in the system either because they have not terminated or
because. they are not a source in DG*. The following lemma éhows
that if the dependency graph is constructed for all of Tl, ..., Tn,

it will be acyclic.

Lemma 6.1. Let {Tl, T2, ..., Tn} be the set of transactions
which have been received by the scheduler so far, excluding those
aborted. If they are scheduled using Algorithm MV, then the de-

pendency graph for these transactions is acyclic.

Proof: Let'Tl, ..., ITm be the transactions which satisfied the
deletion condition in that order and have been deleted from DG* main-
tained by the scheduler. Starting with the current DG*, which is
acyclic, we shall first restore Tm back to it. We want to show that
the resulting graph is also acyclic. Since Tm satisfied the deletion
condition at the time it was deleted, it was a source then. By re-
storing a source to an acyclic graph we obtain another acyclic graph.
Some new arcs which did not exist at the time of deletion may have
to be introduced, since new transactions may have been received after
the deletion. These arcs, if any, must be directed from node Tm to
other nodes. Hence the dependency graph is acyclic. The lemma can
be proved by induction on the number of transaction nodes restored aé
above.

Q.E.D.
* It is now easy to prove a main theorem of this paper.

Theorem 6.1. Any execution allowed by Algorithm MV is V-seri-

alizable.

- 26 -

209

Proof: Le£ Tl, T2, ..., Tn and the index m be as defined just
before Lemma 6.1. To prove the theorem, we first consider the case
where m=n, i.e., all transactions are completed. It follows from
Theorem 4.1 and Lemma6.l that the resultant execution is V-seri-

alizable.

Consider now the situation where there are open transactions
which may be aborted in the future, i.e., the case where m<n. ' We
claim that‘no mgtter what happens to them in the future, the partial
execution consiétingoftheoperatinnsof Tl, ..., Tm.is V-serializable.
This is clear since that subgraph of the dependency graph which is
defined by the nodes Tl, ..., Tm is acyclic and future actions of the
scheduler will never create an arc directed to any of T1, ..., Tm,
hence the subgraph in question will remain>écyclic. In fact, this
subgraph will never change in the future.

Q.E.D.

7. Conclusion

5
I

We have proposed a concurrency control scheme Which,maintaiﬁs
multiple versions of each data object. This avoids inconsistency
to‘Be caused by a read operation, since an appropriate version to be
‘read isAalways available. It also enables more concurrency by al-
lowing "write-ahead.'" If it becomes apparent that a write operation
must be rejected in order to avoid inconsistency, we abort not only
the transaction that issued the write request but also others that
have read the versions wri;ten by the aborted transactions. It is
possible to salvage some computation of a transaction to be aborted-
up to the first read operation that read an invalidated version, by

referring to the partial history graph HG*.

- 27 -

210

The secondary.arcs of the dependency graph were introduced more
for expediency than for necessity. For example, if Wj[X] arrives
after Wi[X], we let the Wj[X].create a newer version (i.e., version
with a larger version number) tﬁan wWi[X]. However, it might be
possible to let Wj[X] create an "older" version than Wi[X] in order
to avoid a cycle that would otherwise be created. This possibility
exists only if Tj did not read X. We intend to explore such possi-

bilities as an extension of the work reported in this paper.

As stated in Introduction, Stearns et al. [STEA~76] allow only
versions writteh by terminated transactions to be read. We have
removed this restriction, allowing any version to be read provided
this reading action does not cause a cycle in DG*. This may increase
the possibity of propagating domino effects. .ﬁnre quantitative analy-

sis is required to see if the vremoval of this restriction is justified.

Acknowledgment

Tharnks are due to Professors I.F. Blake and E.G. Manning of the
University of Waterloo without whose support this work would not have
been possible. One of the authors, S. Muro, wishes to express his
sincere appreciation to Prqféssors T. Hasegawa and T. Ibaraki of Kyoto
University. for their support and encouragement. He also aaknowledges
stimulating discussions with Hide Tokuda of the C.C.N.G. at the Uni-
versity of Waterloo. Abdul Farrag’of Simon Fraser University has also

provided us with useful comments.

- 28 -

211

References

[AHOH-74] Aho, A.V., Hopcroft, J.E., and Ullman, J.D.,'"The Design
and Analysis of Computer Algorithms", Addison-Wesley
Reading, Mass., 1974.

[ASTR-76] Astrahan, M.M., et al., "System R: Relational approach
to database management', ACM TODS 1, 2 (June 1976), 97-
137.

[BADA-80] Badal, D.Z., "The analysis of the effects of concurrency
control on distributed database system performance",

Proc. 6th Intn®1 Conf. on VLDB (Oct. 1980), 376-383.

[BAYE-80] .Bayer, R., Heller, H., and Reiser, A., " Parallelism and
recovery in database systems', ACM TODS 5, 2 (June 1980),
139-156.

[BERN-79] Bernstein, P.A., Shipman, D., and Wong, W., "Formal aspects
of serializability in database concurrency control', IEEE

Trans. Software Eng. SE-5, 3 (May 1979), 203-216.

[BERN-81] Bernstein, P.A. and Goodman, N., "Concurrency control in

distributed database systems", ACM Comp. Surveys 13, 2
(June 1981), 185-222.

[CASA-81] Casanova, M.A., ""The concurrency control problem for

database systems'", In Lecture Notes in Computer Science

116, Springer Verlag, 1981.

[DUBO~-82] DuBourdieu, D.J., "Implementation of. distributed trans—~
actions", Proc. The 6th Berkeley Workshop on Dist. Data
Manag. and Comp. Networks, (Feb. 1982), 81-94. -

[ESWA-76] Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L.,
"The notions of consistency and predicate locks in a

database system', CACM 19, 11 (Nov. 1976) 624~633.

[FISC-81] Fischer, M.J., Griffeth, N.D., and Lynch, N.A., "Global
states of a ditributed system", Proc. IEEE Symp. on

Reliability in Distribufed Software and Database Systems,
(July 1981), 33-38.

[GARE-79] Garey, M.R. and Johnson, D.S., "Computers and Intractability—

A guide to the theory of NP-completeness', Freeman, 1979.

- 29 -

212

[GRAY-78]

[KELL-75]

[KESS-80]

[RNUT-73]

[KUNG-81]

[MINO-80]

[MURO-81]

[MURO-82]

[PAPA-77]

[PAPA-79]

[PAPA-82]

Gray, J.N., "Notes on data base operating systems", In
Lecture Notes in Computer Science 60, Springer-Verlag,
1978, 393-481. “

. Keller, R.M., '"Look-ahead processors', ACM Computing

Surveys 7, 4 (Dec. 1975), 177-195.

Kessels, J.L.W., "The readers and writers problem avoided",

Info. Process. Letts. 10, 3 (April 1980), 159-162.

Knuth, D.E., "The Art of Computer Programming, Vol.3:

Sorting and Searching', Addison-Wesley, Reading, Mass.,
1973.

Kung, H.T. and Robinson, J.T., "On optimistic methods for

concurrency control', ACM TODS 6, 2 (June 1981), 213-227.

Minoura, T., "Resilient extended true-copy token algorithm
for distributed database systems', Ph.D. Thesis, Stanford

University, May 1980.

Muro, S., Minoura, T., and Kameda, T., "Multi-version con~
currency control for a database system", CCNG Report
E-98, Computer Communications Networks Group, University

of Waterloo, August 1981.

Muro, S., Minoura, T., and Kameda, T., "Multi-version con-
currency control scheme for a database system'", Technical
Report TR 82-2, Dept. of Computing Science, Simon Fraser

University, February 1982.

Papadimitriou, C.H., Bernstein, P.A., Rothnie, J., "Some
computational problems in database concurrency control",
Proc. Conf. Theoretical Comp. Sci., Univ. of Waterloo,

(Aug 1977), 275-282,

Papadimitriou, C.H., "The serializability of comncurrent

database updates', JACM 26, 4 (Oct. 1979), 631-653.

Papadimitriou, C.H. and Kanellakis, P.C., "On concurrency
control by multiple versions", Proc. ACM Symp. on Principles

of Database Systems, (March 1982), 76-82.

- 30 -

[REED-79]

[RUSS-80]

[STEA-T76]

[STON-76]

213

Reed, D.P., "Implementing atomic actions on decentralized
data", Proc. 7th ACM Symp. on Operating Systems Principles,
(Dec. 1979), 66-74.

Russel, D.L., "State restoration in systems of communi-
cating processes'", IEEE Trans. Software Eng. SE-6, 2
(March 1980), 183-194.

Stearns, R., Lewis, P., and Rosenkrantz, D., "Concurrency
control for database systems", Proc. IEEE Symp. Foundations

of Comp. Sci. (Oct. 1976), 19-32.

Stonebraker, M., Wong, E., and Kreps, P., "The design and
implementation of INGRES", ACM TODS 1, 3 (Sept. 1976)
189-222.

- 31 -

214

Fig. 1. Data Structure for Implementing HG*.

- 32 -

