goooboooogn
O 4820 19830 240-254

240

Treatment of Big Values in an Applicative Language HFP

—-- Translation from By-Value Access to By-Update Access ===

Takuya Katayama

Department of Computer Science
Tokyo Institute of Technology
- 2-12-1 Ookayama, Meguro-ku

Tokyo 152, Japan

241

1. Introduction

A method for treating big data in an applicative language HFP by converting the way
of accessing data from by-value to by-update. It is well-recognized that the applicative
or functional style of programming is superior to the procedural one in its clarify,
readability and verifiability. It usage in the practical world of computing, however, is
blocked by the lack of ways for efficiently executing programs in the style and it comes
mainly from the fact that, in applicative or functional languages, every data is
accessed through its value and there is no way of naming and updating it through the
name, Although this problem may not be conspicuous when data is small in size, it is
‘essential in dealing with big data such as files and databases.

Although there are cases where we can avoid computation involving big values by
delaying the operations on the values until they afe really needed, i.e., by lazy
evaluation technique [2], this technique is not almighty and in many cases we have to do
computations about big values, such as updating files, large list structures or
arrays. This paper proposes a method of treating big data by converting by-value access
to by-update access, which is used in the imlpementation of an applicative language HFP.

HFP is an applicative language which admits hierarchical and applicative
programming [3] and is based on the attribute grammar of Knuth [5]. It also has close
relationship to Prolog. In the following we first introduce HFP and the discuss its
implementation which solve the big data problem by using a simple file processing

program.
2. HFP

HFP is an applicative language which supports hierarchical program design and
verification. In HFP, a program is considered a module with inputs and outputs which are
called attributes of the module, When a task to be performed by the module is complex,
it is decomposed into submodules which perform corresponding subtasks and this fact is

expressed by a set of equations which hold among attributes of the modules involved in

242

the decomposition. Module decomposition proceeds until no more decompositions are
possible.

In short, HFP is an extension of attribute grammar to write programs for
general problems which are not necessarily language processing ones for which attribute

grammar has been originaly invented.

2.1 Formalism

HFP comprises (1) module, (2) module decomposition, and (3) equation.
(1) Module

Module is a black box with inputs and outputs termed attributes, The function of
module is to transform its inputs to outputs. A module M with inputs Xqs e X, and

OUtpUts Yis ees Y is denoted diagramatically by

‘ M ‘ +X19 see® +xns +y19 %09 +ym

and we write
IN[MI = {Xys ees X }s OUTIMI = {y3s eees y 1o
Module is completely specified by its input-output relationship and ﬁo side effect is
permitted.
There are special modules: the jnitial module Mt and pull module. The initiél
module corresponds to the main program and whose input-output relationship is what is to
be realized by the HFP program under consideration. The null module, denoted by mull, is

used to terminate module decomposition,

243

(2) Module Decomposition
When a module M, has to perform a complex function and is decomposed into modules
Mjs Mgs wes My, we express this fact by
140 > My My e M
or |

o | T e [E

Decomposition process is terminated by applying a special decomposition with
null module as its right side, which is denoted by

M +null or simply l M l

It is usually the case that a module is decomposed in several ways. We attach the
decomposition condition C to each decomposition d and write
d: KO > My My e My when C.
‘The condition C is, in general, specified in terms of attributes, or more accurately,
attribute occurrences of Mys Mys ews M and it directs when this decomposition may
apply. In this paper we only consider determinitic HFP in which (1) this condition C is
specified in terms of input attributes of M, and (2) there are no two decompositions with

the same left side module whose decomposition conditions may become simultaneously true,

244

‘(3) Fquations

We associate a set of equations to each decomposition d for specifying how the task
performed by the main module M is decomposed into subtasks performed by suﬁmodules Ml’
cees My This is done by writing equations for (1) what data should be sent to sub-
modules as their ;inputs and (2) how to combine their computation results to obtaip
outputs of the main module, Equatio;ls are of the form

Vv = F, (Vs ees V)

where (1) VsV]sewsV, are attribute occurrences in d. We use the notation M;.a to denote
an occurrence of attribute a of M; in the decomposition d, (2 v = M;.a for aeIN[Mi]
(i=lsesk) or v = Mga for anUT[Mo]. (3) F, is an attribute fupction for computing v
from other attribute occurrences V]seeesVyie
[Computation in HFP]

Given the values of input attributes of the initial module, computation in HFP is
carried out in the following steps.
(1) Starting from the initial module, apply deéompositions successively until terminated
by null module. A tree which is virtually constructed in the above process and whose
nodes are module occurrences of the decompositions applied is called a computation tree,
(2) Evaluate the values of attributes of the modules in the computation tree according to
the equations associated with decompositions applied.
(3) The values of outputs of the initial module give the results of the computation
activated by its input values.
2,2 Example : 91HFP

Let us consider a simple example. Although this example is too simple to verify tfxe
power of HFP it will be some aid in understanding it.

Let F be the McCarthy's 91 function. This function is defined by

F(n) = if n<100 then F(F(n+11)) else n-10.

We introduce the moduler 'F! and associate input n and output v with it. The module F is
decomposed into two ways as shown below with equations about its attributes n and ve

(Note that '=' in the with clauses means 'equal to' and not a symbol for assignment.)

decomposition 1.

- o o -t

245

decomposition 2.

'ith Fow = F.Il‘lo

when F.an > 100

with Fya = Fatll
F2¢Il = Fl.v
Fov = F2.v

when Fan < 100

In decomposition 1, module name F is indexed to distinguish different occurrences

and no submodule exists in decomposition 2 to terminate decomposition. Attributes
prefixed by ™' and "' are inputs and outputs respectively. The whem clause specifies
the condition on which the decomposition may apply.

The tree below shows a computation tree for input n=99, where dotted lines indicate

data dependency.

~

' N .
- .—"‘ “‘~-<—“\

~

\

'
¢ cep.

| ¢ | ne111, veion
—————— ‘\\~’—‘,4 t

i F |n=:101. v=:'91

\.._’ ,,‘

2.3 Comparison to ’Backus'ﬂ’ and Prolog

[Backus®FP] Applicability of HFP consists in the facts: (1) relationship between
attribute occurrences in every decomposition is specified by a set of equations which
state that they are computed functionally from other attribute occurrences and (2) every
moduie can be viewed as defining a set of functions which realize input-output

relationship of the module. Difference between the Backus' functional programming (BFP)

246

and ours is that BFP defines functions explicitly from primitive ones in terms of
functional calculus, whereas HFP forcuses on modules and their decompositions and the
form of the functions realized by the module is scattered in the set of equations,
[Prolog] Nondeterministic HFP is very closely related to Prolog in which every of
variable is specialized for either input or output. Let d be a decomposition in HFP
‘d : M > Ml MZ cos Mk when C.
Roughly speaking, this decomposition is‘v equivalent to the following Horn clause in
prolog, where [M], in general. means M whose attribute occurrences are substituted by the
right hand side of the equations for defining them.
M1 <« [M;1.0M)sees LMy 15 LC]

We consider that this fact does not degrade HFP, because distinction between input
and output is essential in many cases and this makes it possible to utilize data
dependency analysis for implementing HFP far more efficiently than otherwise and to

verify HFP program by the method similar to the one for attribute grammar [3].

247

3, Basic Implem@tati.on Technique for HFP

The basic idea‘;for implementing HFP is to associate procedures PM,y to each module M
and its output attribute y, and translate the given HFP into a procedural program which
consists of these procedures. Here we only skech the technique and for the detail please
refer to [3]. We only‘ consider absolutely noncircular HFPs.

Let di's(i=1.2,...) be decoﬁpositions with left side mode M and decomposition
condition C;e Then the procedure PM,y is of the form

procedure PM,y(Xl,“"xn;y)

if C; then H; else
if C, then H, else

end
where X; ws X are input attributes of M on which y is dependent. They are decided by
analyzing data dependency DG[M] in the attributes of M. Hi's are sequences of assignment
or procedure call statements to calculate the value of y from those of x;'s ,whose forms
are detgrmined from data dependencies DG[&i] afnong attribute occurrences of d;'s and

their associated equations. The principle for constructing H; is stated in the following

way. First we prepare variables for attribute occurrences of di’ H.

; is a sequence of

statements to assign values to these variables when the decomposition condition C; holds.
If a variable corresponds to the output attribute y of the main module M or to an imput
attribute of a submodule M' then the value assigned is computed from the defining
equation for it. If it correspons to an output attribute w of a submodule M', the \falue
is obtained by calling a procedure PM',W which is associated with M' and w. These
statements are listed in such order as determined by topologically sorting the dependency
relation DG[d;] among attribute occurrences/ of d; so that the value of an attribute
occurtence v is determined after valuation of attribute occurrences on whig:h v is

dependent has been completed.

248

The next program is obtained from the 91 HFP.
program PROGI1
procedure F(n;v)

if n > 100 then v <« n-10

else nl « n+ll ; call F(nl,vl) ; h2 +« vl

call F(n2,v2) ;3 v « v2
end
input(n) ; call F(n,v) ; output(v)

end

Of course, this program can be made simpler by folding assignment statements.

4, Implementing Access to Big Values in HFP

4.1 An Example : A Simple File Processing HFP Program

Let us consider the following simple file processing HFP program which, given

an

input file of records Rys Roseews Ry arranged in this order, produces an output file of

records F(RI)’ F(Ry)sees F(Ry), where F is & function operated on input records.

attribute infile, outfile, outfile0 : file of record
inrec, outrec : record
module main has +infile toutfile
process-file has Yinfile Youtfile(4outfile
process-rec has Vinrec toutrec
module decomposition

(1) lmainl ¥infile 4outfile

Iprocess—filel tinfile Youtfile0 toutfile

with outfile0 = emptyfile

249
(2)

lprocess-filel tinfile YoutfileQ 4toutfile

!process-rec l lprocess-f ile

tinrec ¥infile$
toutrec ‘ toutfile0$
toutfile

with inrec = 1st(infile)

infile$ = rest(infile)

outfile0$ = appendr(outfile0, outrec)
when not eof(infile)

(3)
tinfile Youtfile0 +outfile

with outfile = outfilel
when eof(infile)

(4)

process-rec| tinrec Youtrec

with output = F(inrec)

when always

[1] The attribute clause defines data types of attributes. file is a data type

with operations

emptyfile : + file
1st. : file -+ record
rest : file + file

appendr : file x record - file
eof : file -+ boolean
s where lst(f) means a first record of a file f, rest(f) is a file obtained from f by

deleting its first record , appendr(f,r) is a file resulted from writing the record r at

250

the end of f, and eof(f) is true iff f is emptyfile., Details of the data type 'record!
is irrelevant here. [2] module clause declares module with their attributes. Input
attributes are prefexed by + and output attributes by 4. [3] with clause specifies
equations associated with a decomposition and whenm clause defines its
decomposition condition. [4] Note that notation for attribute occurrence is different
from what is given in section 2. In this HFP program, for the sake of clarity, attribute
occurrence is not prefixed by module name and instead positional notation is used. Also
note that when the same attribute name appears more that once in a decomposition this
means that equations for copying the attribute values are omitted.

Suppose we apply the basic implementation technique to this HFP, we get the

following procedural type program

program main(infile; outfile)
procedure process-file(infile, outfile0; outfile)
if not eof(infile) them
inrec := ist(infile)
infile$:= rest(infile)
call process-rec{inrec; outrec)
outfile0$:= appendr(outfileC, outrec)
call process-file(infile$, outfile0$; outfile)
else
outfile := outfile
end
procedure process-rec(inrec; outrec)
outrec := F(inrec)
end
outfile0 := emptyfile
call process-file(infile, outfile0; outfile)
end

This program is, of course, unacceptable because big values of files are copied to :

10 §

251

variables and passed to and from procedures.

[From By-Value Access To By-Update Access]
Let's consider a computation tree for this HFP program, which illustrates how the

input file 'infile' of the main module is transformed into the output file 'outfile'.

[main l Yinfile +“outfile

[] -
: - - -~
i
! :
lprocess-file] Yvinfile +YoutfileQ 4outfile
L) \
: l\\‘ \"-‘,-.-«~\
L, e =T T b‘ *V%) \i
K i « A
v i s ;
N ST T el I T al ;
1 3 ; i :
.- 2] -
lprocess—recl ‘+inrec ‘outrec Iprocess—f ile| +infile Youtfile0 +outfile
\) 1 ! :
N o 5 3 i
- 1 ' *
v ¥ TR e -
L] * ~ \‘5
- - .
4“"“"““““""“""“-.. ,,,,, —~ \\ !
¢ Y H
. 1] ‘
1 - -
' R ok clhiaf 1 y !
% ’ i ¥ B
: 4" ¥ ' }
}process—rec 5 tinrec toutrec Iprocess-file‘ tinfile Youtfile0 +toutfile
’ ¥
\ ! ‘\ re
e Tmm e e

From this tree, we can see the foilowing (1) and (2) hold.

(1) To all occurrencés of the attribute 'infile' can be assigned a single global variable
instead of a stack which is realized by activation records of the procedure 'process-
file' in the above program. This is because after 'infile' is referred at a level to
compute values of 'inrec' and ‘'infile' for the next level it is not referred any more.
(2) So are foutfile' and ‘outfile0'. Furthermore, we can assign the identical global
variable to these attributes just by the similar reason,

Taking these \f‘acts into consideration, the generated program for our file processing

HFP becomes as follows, The procedure 'process-file' has no parameters in this version,

11

252

program main(infile, outfile)
procedure process-file
if not eof(infile) them
inrec := 1st(infile)
infile := rest(infile)
call process-rec(inrec; outrec)
outfile := appendr(outfile, outrec)
call process-file
end
procedure process-rec(inrec; outrec)
outrec := F(inrec)
end
outfile := emptyfile
call process-file

end

Note that we omotted a useless assignment Toutfile := outfile' and changed the if-then-
else statement to if-then statement.
Now, what shoule be done next is to translate ‘by-value' file access to 'by-update'

access., This is accomplished by the help of translation axioms given below.,

Axiom 1
inrec := 1lst(infile)
infile := rest(infile)
--—* read(infile, inrec)
Axiom 2
outfile := appendr(outfile, outrec)
--— write(outfile, outrec)
Axiom 3

outfile := emptyfile

—— rewrite(outfile)

12

253

The read, write, and rewrite statements are such that (1) read(f,r) transfers the
record of f at the .cursor position to r and move the cursor right, (2) write(f,r) writes
the data in r at the cursor position and move it right and (3) rewrite(f) initializes f.

After applying these axioms to the generated program, i.e., replacing texts which
matches the right side of any axiom by its left side, we have the following program in

"which files are accessed through the usual updating operations ‘read' and 'write'. We
also changed tail recursion to iteration.
program main(infile, outfile)
rewrite(outfile)
while not eof(infile) do
read(infile, inrec)
outrec 3= F(inrec)

write(outfile, outrec)

4,2 General Scheme for Translation

Translating a given HFP program into a procedural type program in which big values
are accessed through updating is performed in the following steps. Input to the
translator is the given HFP program and a database of axioms which state what pattern of
by-value data access statements can be converted to by-update access statements.

1. Calculate data dependency relations DG[d] and DG[M] among (1) attribute
occurrences of each decomposition d and (2) attributes of each module M rspectively.

2. Determine groups of attributes to which single global varidbles can be assigned.
These groups can be determined from dependency relation DG[d] obtained in step 1. A
simple ‘and useftiil criterion that a group of attributes satisfies the above condition is
that every deoendency relation DG[d] does not contain 'branching' with respect to -the
attributes. Moré specifically, this is stated in the following way. Let DGLd]=(V,E),
where V is a set of attribute occurrences of d and E={(vl,v2)]|there is an attribute
function f_, such that v2=f (..svls.)}. If there is no tripple (v1,v2,v3) such that

both of (v1,v2) and (vl,v3) are in E and vl, v2 and v3 are among MjeajseeesMyeays then

13

254

this criterion assures that these attributes 8psemsdy CaN be globalized. Distinct local
variables are assigned to other attribute occurrences.

3. For each module M and its output attribute y, construct a procedure PM,y by the
method sketched in section 3.

4, Inspect the body of PM,y and find a group of statements for big data access. If
it matches to the right side of some conversion axiom, replace the group by its left side
which is a sequence of statements for by-update data access.

5. Apply, if possible, other optimization techniques such as folding of assigment
statements and recursion elimination.

* 5. Concluding Remarks.

We have proposed a method of treating big values which is used in an applicative

language HFP. The underlying principle is to convert by-value data access to by-update

data cccess with the aid of convertion axiom database. An exampe is given to support

this method. This principle may be applied to other applicative systems.

References

1. Backus, J. Can programming Be Liberated from the von Neumamm Style ? A Functional:
Style and Its Algebra. Comm. ACM, 21,8(Aug.1978)s 613-641

2. Henderson,sP. & Morris,J.H. A Lazy Evaluator. Proc. of 3rd ACM Smp. on Principle of
Programming Languages (1976)

3. Katayama, T. HFP: A Hierarchical and Functional Programming Based on Attribue
Grammar,Proc. 5th Int. Conf. On Software Engineering (1981)

4. Katayama,T., and Hoshino, Y. Verification of Attribute Grammars. Proc. 8th ACM
Symposium on Principles of Programming Languages (1981)

5. Kunth, D.E. Semantics of context-free languages Math. Syst. Theoty J.2(1968),127-

145

14

