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Abstract

This paper extends the polynomial remainder sequence and introduces a concept
of by—-PRS, or by-polynomial remainder sequence. The by-PRS can be used in
many algebraic calculations, for example, in solving coupled Diophantine
equations of polynomial coefficients. Jt 1is shown that’ the subresultant
theory on PRS can be extended to include by-PRS, and two algorithms for by-PRS
calculation are presented. The algorithms are analogous to the subresultant

PRS algorithm,
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§1. Introduction

The PRS is an abbreviation of polynomial remainder sequence, and it plays

an important role in algebra, for example, for calculating polynomial greatest

common divisors or as a Sturm sequence,

Let F(x) and G(x) be polynomials of degree £ and m, respectively, with

coefficients in an integral domain I:

F) = f,x° + 1, x*1+ 4+, fel (1.1)

m m—1

Gx) = g x° + g X ~ + ..+ g, ge¢elL (1.2)
Assuming £ =Zzm and putting P1=F and P2=G, we can generate a PRS, (Pl'

P . PkaéO. Pk+1=0), by éuccesively calculating remainders through the

gr e
following formula:

BiPHl = aiPi_l - QP,, deg(PHl) < deg(Pi), i=2.3,....k, (1.3)
where ai,Bi el The choice aizl, which is the case that (1.3) is the
conventional polynomial division, does not guarantee that Pi(x) e I[x]. In
computer algebra, it is rather common to choose

a, = {lc(Pi)}deg(Pi_l)—deg(Pi)ﬂ’ (1.4)

where lc(Pi) is the leading coefficient of Pi. That is, we perform the

pSeudo—division instead of the division, Then, the pseudo-remainder (which we

abbreviate by prem) is in I[x]. For example,

prem(F,G) = g,(:_mH)F - QG (1.5)
Emn Bm—1 -+ - - Em—p  Eig4m
En 8m—1 + - Bom—r+1 Bi+1—24m
o 1
= Z X
i=m—1
gm gi
fl fﬁ——l fm fl




£ —m
gm gm—l g2m—£ X G
£—m—1
Em  Em— Eom—g+1 G
0
g, x G
0
A £ x"F

Here, g, is defined to be zero for negative 1,
Calculation of PRS can be regarded as a succesive reduction of a set of two

polynomials (PI,P2)' to (Pi,P.

1+1)’ i=2,3,....,k, by .eliminating highest degree

terms, In addition to the reduction of two polynomials, we are often

(2) (n)
pi™)

necessary to reduce a set of many polynomials (Pél), PO s ees

to

(n)

another set (Pi(l), PO, L P.1 } by succesively eliminating highest degree

(2)
i
terms. Such a case happens, for example, in solving coupled Diophantine
equations of polynomial coefficients,

" The necessity of reducing a set of many polynomials leads us to a concept

of by-PRS, or by-polynomial remainder sequence. For simplicity, let us

consider the case of three polynomials F(x), G(x) and H(x), with F and G given

by (1.1) and (1.2), respectively, and H given by

Hx) = hpx’ + hp x* 7D+ 4+ h, hel e

A by-PRS is a polynomial remainder sequence generated by H and the PRS

(P.,P,...., P,) through the following formula:

- P, deg(P) < deg(P), (1.7)
i=2,3,...k if deg(P,)>0, i=2,3,...k-1 if deg(P,)=0,

where &i,ﬁi eI, When deg(Pk):O, we define ﬁk:[). Note that, without the

~

sequence (P,,P,,...,P.), we cannot calculate the by-PRS (P

etk P P.). In

1P gy

this sense, we may call the sequence (Pl’PZ""'Pk) main-PRS,

From the above definition of by-PRS, it is clear that the reduction of a
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set of more than three polynomials (F, G, HY, u'®, ., ™) through the

formula (1.7) can be done by calculating by-PRS for each triple of the set
{(F,G,H(l)), (F,G,H(Z)), (F,G,H(n))}. Hence, this paper discusses only
the case of three polynomials (F,G,H).

So far, we have not mentioned about th‘e choice of B, The efficiency o‘f
PRS calculation depends very much on the choice of B, [1,5]. For example, the
choice Bi=1 ‘makes the calculation of PRS extremely exXpensive because of a
phenomendn of coefficient growth[5]. Different choices of /91 e I in (1.3)
give different PRSs the coefficients of which arve not always in I but may be
in the gquotient field of 1. From the viewpoint of computer algebra,
calculations are easier over [ than over the quotient field of I, Hence, an
importaﬁt problem in computer algebra is to search for a suitable choice of
Bi which makes the calculation of PRS reasonably efficient and makes the PRS
be in I{x]. ’In 1966, Collins[2] analyzed the PRS generated through (1.3) and
found "an important choice of B,. The choice is called the reduced PRS
algorithm, Collins” work was deepened by himself[3] and by Brown and
Traub[4], and the so—called subresultant PRS algorithm was found, ’i‘hese
algorithms ére based on the subresultant theory which we briefly s\urvey‘ in §2.

In this paper, we extend the subresultant theory so aé to include by-PRS,
The extension leads us to two algorithms for by-PRS calculation, The
algorithms calculate by—-PRS so that any polynomial in the by—-PRS ié equal to
an extended subresultant and they are quite similar to the reduced-PRS

algorithm,



8§2. Survey of the subresultant theory on PRS

In this section, we define notations, survey the subresultant theory
briefly, and present formulas which are necessary in the following sections.
The PRS with starting polynomials P1=F and P2=G is denoted as
(Pl’Pz'Ps""’Pk) and the by—-PRS with starting polynomial §1=H and the
main—-PRS (Pl’PZ"-“'Pk) is denoted as (}31,152,,..,131(), as before, The leading

coefficients  of Pi and ﬁi are denoted as c and Ei, respectively:

lc(Pi) = C,
N (2.1)
lc(Pi) = C,.
The degrees of Pi and 13i are denoted as n, anvd ﬁi, respectively:
| deg(P,) = n,,
~ (2.2)
deg(P)) = ﬁi.
The di denotes the following degree difference:
d, = n - .. ‘ (2.3)

The PRS is called normal if di=1 for every i=2, otherwise the PRS is called
abnormal,

Polynomials A(x) and B(x) in K[x] are similar over K and represented as
A(x) ~B(X) if a-A(x)=b-B(x) for some nonzero a,b & K, where K is a coefficient

domain, As we have mentioned in §1, different choices of a, and ‘91 in (1.3)

give different PRSs which are similar to each other over the quotient field of .

I Suitable choices of B, as well as the choice (1.4) for @, make the PRS be
in I{x], of course. Note that some polynomials in the by-PRS may be similar,
Such a case happens when deg(ﬁi_l)«ieg(Pi), then lsi_1~f5i.

The j~th subresultant Sj of F and G is defined by
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m—j—1g],
Fp Ty fojsom X F
m—j—2
fo Ty foiraem X F
m—j TOoOws
0
fe fj+1 x F
2—j—1 1.
SJ.(F,G) €n Em—q €9 49-4 X Gy, (2. 4)
L—j—2
£—j rows
0
m gj+1 x"G
where ffzgfzo for i<(. Note that SO(F,G) is ‘nothing but VSylvester's

determinant representing the resultant of F and G and that SJ.(F,G) is a
polynomial of degree j or less: the i—th degree term of SJ.(F,G) is obtained by

i
by the vector X°(fi—(.m—j—1)’

replacing the rightmost column of (2.4)

fiop T 8igaojory

ceer &i_q0 gi) which 1is proportional to one of the other
columns of (2.4) if izj+1.
The subresultants are closely related with the PRS:

P, ~ Sni(F,G). i=3,4,....k. (2.5)
This fact was known to .mathematicians for many years. However, it is
Collins’ paper in 1966 that gave the proportional factor between Pi and Sn,
and presente_:d an efficient algorithm for reducing the proportional factor,
Collins' work was deepenedrby himself and by Brown and Traub to the following
theorem:

Theorem 1 (main theorem .on PRS).

When 0<j<n,  S,(P,.P;) = 0, (2.6)

and for i=3,4,....k,

P, = 4;S, (P.P,), , (2.7

i
i—1
_(1-d, ) (n_-n.,) —(d_ +d)
A, = c, 1 Ilz{(ar/ﬁr) r i'c "r-1 'r
=

1 r



x(=1) P17 R

, (2.8)
S;(P,.P,) = 0 when n<j<n_,-1I, (2.9)
P, = pisni_rl(P}fz)' : (2.10)
o, = o Y-tV TTt(a /8, @ i g 700 (2.11)
r=32
X(=1)Pro1 M PO Dy
For the proof, see [4].
In the reduced PRS algorithm, Bi is set simply as
Bz =1, B = 5 i=3,4,...,k, (2.12)
where a, is given by (1.4). Then, according to (2.10) and (2.11),
_ 1y (d D)
P, = ( 0 Snz_l(Pl,Pz),
_ (4, ,*+1) :
P, = (-1)"2 'S ~1(P1’P2) (2.13)

i-1
i~2
X H{Cir—l(dr_l)(_1)(nr—1~ni—l+1)(nr—ni—l+1)}, i4,
r=2

which show obviously that P, e Ilx].
The subresultant PRS algorithm calculates PRS so that pi=1 for every i=3,

According to [4], the algorithm determines Bi as

B, = (DU
B, = —c,_ &l i=3,4,..k, @1
where <, is given by
i-1
¢, = (-1/e,_ ) [La /B ) (-1) B ¥ Dy | (2.15)
r=2 o
and ‘it is calculated succesively as
€, = -1,
d . '
€, = —Cy t, , (2.16)

(14, )

¢, = (¢, %2, i=4,5,....k.
"Formula (2.16) looks as if Ci is not in I but in the quotient field of I,
However, Brown[§] proved the following equality which shows Ci e It

¢ = -lels, (PLP), izl (2.17)

1
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§3. An extension of the subresultant theory

We assume that deg(F) = deg(G),deg(H), or £ =2m,7. We define an extended

subresultant §j_1(F,G,H) by the following determinant of order £Z+m-2j+1:

m—j—1
fg foy - o o f2j+1~m X F
m—j—2
f, foy « o . f2j+2_m X F
m—j TOWS
~ 0 ‘
Sj_l(F,G,H) f, - . . 1 x F /
2—j—1pn
= |8, Bny - - - - . By, X G|, (3.1)
£—j—2
E€m Em—1 - - -+ - Eoj49-y X G
£—j rows
gn g ; xOG
; 0
hz hJ X H

where fi=gi=0 for i<0, Note that §j_ is a polynomial of degree j—1 or less,

1

and §3-1 can be defined only when (<jSm, Note further that the above

definition ‘is meaningless when j=m and Z=¢ because we cannot form the

determinant, In the case of j=m and Z=£, we define §m_1(F,G,H) as follows:

£2—m
€n 8m—1 + - - Bom g4 X G
E—_m—l
Em Em—1 + - Som+1—s G
Sp_1 = (3.1")
(I=¢) o . . £-—m+1 rows
0
g x G
h, h h x'H
2 £—1 m




The exceptional case of j=m and Z=£ is not important in the below because we are
mainly interested in the case of j<m.

Let us consider the case of £ 2 Z =m first,
Lemma 1. Let £2Z=m, F = QG + F' with deg(F')=n<m, and H = QG + H with

deg (H' )=n<m:

v . s N , n-1 ,
Fr(x) = f'x + £ + o+,
5 F-1 (3.2)

H(x) = hx + b (X + ...+ h.
Then, for such j that 0<j<m, we have the following eqgualities:
when (<j<n

§ _(F,.GH) = (- mdglemml s (g p 1wy, (3.3)

-1 m -1
when j=n<n

§, [(F.GH = (-)Ummmglemmly @i Dpren 1y 7)), (3.4)
when j=n>n

§, [(F.GH) = (-pUmmmiglemny monyy (3.5)
when (j=n+1 or j=m-1) and n<fi=m-1

& _ (2=t m=j) _(£2-)),, (m-j-1), y

Sj_l(F,G,H) = (-1) g, f h _ F (3.6)
and in other cases, that is,
when j=n+1 and ni<m-1 or when n+l<j<m-1 or when j=m-1>n,1

S, (F.GH) = 0. (3.7)

(Proof) Since j<m, we have only to consider the determinant (3.1). Let Q =

£ -m

a,_.X + ...+ - Then, representing the equality F — QG = F’ as linear

equations on coefficients of F, Q, G and F', we have

(L —a,_ oo —ag){f, f,_, . . . . . f
8n 8m—1 g, £-m+2 rows
L 8n 8m—1 g,
’\ez—\/\
=(0...01’ni’_1 f())
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Taking out left £2+m-2j—i+1 ones of the above equalities, with

m-—j—i

adding x

obtain

£-j—i
£-m

m—j—i
foitiom ¥ F)

£—-m ‘
2500 .. 0 g &, -
r=0

+ (0 ... 0 f

n n-1

m—j—i+rG)

g2j+i—-m—-r X
, m—j—ir, '
fyitiom X F).

1=i<m-j, and

F = ¢ X G+ ... + qoxmﬂ—iG + ™ from the right, we

The 1.h.s. of this equality is the i-th row of (3.1), and every vector in the

summation of the r.h:s.

rows of (3.1)

is contained in (3.1).

by the r.h.s. of the above equalities,

with

Hence, by replacing upper m-—j

i=1,2,....m-j, and

by replacing the lowest row of (3.1) similarly, we can rewrite (3.1) as

Sj_'_l(F,G,H)

£-m
0 .0 t”n f’n—l
f’n f’n__l
fl
gm gm~1
gm gm-—l
&m
h.
n

. g,

»f2j+1—m
f2i+2—m
f’,

J
Boj+1—2
Boj+a—s

J
b,

]

(84+4m—2j+1) columns

S

x* i

X

£—j—1

£—i—2

0

FI

x G

X

0

HI

Trows

(3.8)

TOwWs

The determinant (3.8) can be reduced easily to yield (3.3) ~ (3.7). (Note the

determinant representaion (1.5) in deriving (3.4).)

reduce the determinant in the case of j=n+1<m.

to be

_10_

For

example, let wus

In this case, (3.8) turns out



’ ’ ‘ ’ m—n—2r,
0 .. 0 fn fn—l o f2n+3—1’n X F
m—n—1
f’ x P TOWS
n
§_(F,G,H) x'F
. £—n—2
- gm gm__l. . . . . . g2n+3_e G
f—n—3
80 €m1 -+ - - - Bonio_y G- £-n-1
TOWS
XOG
gm * c gn+1
/7 7 0 4
hﬁ c hn+1 x H

(g+m—92n—1) columns

We see that the determinant is not zero bonly when the element h’ﬁ in the last
row is located on the\left side of the element f’n in the first row, that is
when fi=m—1 (note that fi<m), In this case, the above determinant can be
transformed to an upper—triangular determinant to give (3.6) with i=n+1.//

Let us next investigate the case of £2m>Z, In this case, only the
replacement of upper m—j rows of (3,1) leads us to the determinant of the form
(3.8). Hence, we obtain the following lemma:

Lemma 2. Let £2m>Z and F = QG + F/ with deg(F)=n<m. Then, for such j that
0<j<m, we have the same equalities as (3.3)~(3.7) except that H, 1, h;n—l in
(3.3)~(3.7) are replaced by H, z, ho_y respectively.//

This lemma is rather obvious since H=H for £2m>Z. Before going further, let
us briefly investigate the case of j=m. When j=m, (3.1) contains no rows
concerning F hence we can readily reduce (3.1) to yield the following lemma:
Lemma 3. The extended subresultant of degree m-1, §m_1(F,G,H), satisfies the
following equalities: |

when Z=4¢
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Spy(F.GH) = 8§ _ (GH) = prem(H,G), (3.9)
when £>f=m

~ '  (e-Z-1)

Sm—'1(F’G'H) = &, prem(H,G), (3.10)
and when m=0+1

& _ {g-m)

Sm_l(F,G,H) = 8, H// (3.11)
In the below, we consider the case of j<m mostly.

Using the lemmas 1 and 2, we can analyze the by-PRS.
(1.3) and

be a PRS generated through

Lemma 4, Let (Pl’p2”“’Pk)
(Isl,ﬁz,...,lsk) be a by-PRS generated through (1.7). Then for such j that

0<j<ni, we have the following equalities:

when O<j<ni+1
a ™ 5.8
i i7j-1
(n,=3¥(n, =) _(d;_,+d)) p(n—-) ¥ & 5
(-1) e SR N TR, (PLPL LB, (3.12)

(P,_, PP, )

when J=1'1i+1§ni

di'\« e
o id Snm_l(Pi_l,Pi,Pi_l)

~

i i
d (d;_,+d,) (di_ +d;) (n—ﬁ'i—l) d; . ~
(- T g ST g T BB prem(P. P, ), (3.13)
when j=ni+'1>r11
dj'\/."' -
a’id Snm—l(Pi—l’Pi’Pi—l) »
di(d;_+d;) (d;_;+d) d; 5d;» ¥
(=D 5GSBS LB, (3.14)
when'(j=ni+14—1 or jzni—l) and ni+1<ﬁi=ni—1
(ni—j)«..N . ~
a, d, Sj—l(Pi—l'Pi'Pi—l)
(0~ (n_—i+1) (n;_ -3 . (n—=j-Dg (n;=Nx 3,
(-1) T e e B, W TVEBPL, (3.15)

i+1

and in other cases of j<ni, that is,

when J=n.+1+1 and ni<ni—1 or when ni+1+1<1<ni~1 or when J=ni—1>r1i+1,ni

= (3.16)

Si—l(Piﬂl’Pir'P%l) = 0.
For such j that j<m, we have

- f‘""”g“"j’hﬁj_l(F.G,H).

(Proof)

§,_ (fF.gG,hH)
Let us consider lemma 1 first. Noting the above relation, and replacing F, G,

_12_
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H, F, and H in lemma 1 by &P, ,, P, &P _,, E'Piﬂ’ and ﬁiPi, respectively

1

jms

m-—n, £ —

-1’ i i-pr 170

(then, replacements £ — n, and 1 — ﬁi are made

i+1°
simultaneously), we obtain (3.12) ~ (3.16) from (3.3) ~ (3.7). We can derive

similar equalities from lemma 2. Noting that equalities in lemma 2 are the

same as those in lemma 1 except for replacements H— H, i — Z and h;n_l — hm—l’

and noting that &iﬁi_lzﬁiﬁi and ﬁi:ﬁi—l when ﬁi_1<ni, we see that lemma 2

gives the same equalities (3.12) ~ (3.186) as lemma 1./

Now, we are ready to state the main theorem,

Theorem 2 (main theorem on by—PRS). The extended subresultant §j_1(P1,P2,131)

satisfies the following equalities:

when O<j<nk

8§, (PP, B =0, (3.17)
when j=ni+1§ﬁi, 1=2,3,....k-1,
: i
§n' I~1(131,132,131) ]__]%{ainr—nm)&,r}
i+ =
= ¢, % eprem (PP, ) | (3.18)

r

1
X I']%{ (_1)(“r_niﬂ)(nr—1_ni+1)cidr—1+dr)ﬁ(nr_“iﬂ)ﬁr} ,
r=

when j=n. >0, i=2,3,....k-1,

1
i

g p (=05
Snlﬂ—l(Pl’PZ’Pl) L {a, a_}

d . .

= t:iﬂ'I’i (3.19)
1
% r];[é{ (-1) (nr_niﬂ}(nr—x_ni+1)cidr—1+dr)ﬁinr’“in)ﬁr ),

(<f=n-1, i=2,3,...k-1,

when (j=ni+1+1 or j—T—ni—l) and n,
1
g < (n —i)~
S (PPy.FPp) L. e 7a)
(_1)(ni—J)Ci(nm—J)Ci(illl—J—l)Ei.PiH (3.20)

i
(n,—)(n,_,~)_(d,_,+d,) p(n )
xgz{(m g STl BT Y,
and in other cases of j<n,, i=2,3,...,k—1, that is,

when j:ni+1+1 and ni<ni—1 or when ni+1+1<J§ni—1 or when j=ni—1>ni+1,ni
Sj—l(Pl’Pz’Pl) = (. (3.21)

(Proof) When (<j<n,, successive application of (3.12) yields

..13_

39



40

i-1
x 5 (=) 5
Si—1 PPy Py Llte lar}
i

o 5 (n,~i)(n,_-3) (d,_,+d,) pln,~j)

= Sj_l(Pi_l,Pi,Pi_l)Xg{ (-1) e SetSlg IRy (3.22)
(Note that replacement i+]1 — i was made in deriving (3.22) from (3.12).) When
j<nk, the above equality is valid for i=k also, Then, using the same

procedure that yielded (3.3) from (3.1), we see that §j_1(Pk_1,Pk,ﬁk_1)=O

because Pk+1=0, Hence, we obtain (3.17). When j=ni+1§ﬁi, (3.22) is still

valid and (3.13) can be used to replace S, (P Pi,ﬁi»_l) in (3.22) by

i-1

i-1’

prém(ﬁi,PHl), which yields (3.18). Similarly, combining (3.22) with (3.14),

(3.15) and (3.16), we obtain (3.19), (3.20) and (3.21), respectively./”

Let us comment on theorem 2. Since ﬁi = Ny in (3.18), prem(lgi,Piﬂ) ~
P,,, in (3.18), hence (3.18) states that
§ni+1_1(P1,P2,151) ~ 131+1' (3.23)
Similarly, (3.19) gives the same similarity because 13i ~ ﬁi-{:l in this case
(note that r1i+1>ﬁi for (3.19)). That is, (3.18) and (3.19) represent j:he
same similarity in two different cases, n, ,<f, and n, >, Note that we

have either- (3.18) or (3.19) in any case. Both (3.18) and (3.19) correspond

to (2.7) for PRS, and no equality is obtained which corresponds to (2.10) for

PRS, Eq.(3.20) is special because it exists only in special cases of
ni+1<ﬁi=ni—1. For example, (3.20) is vacuous for normal PRS for which
ni+1:ni_1’ i:253i---1k_1-

_14_



§4. Subresultant by-PRS algorithms

This section considers a problem of calculating by-PRS

Pi:Sni_l(Pl,Pz,Pl). In this section we choose a; as (1.4), or
a, = Cfi"1+1,
1 1

The &i, Bi and ﬁi are specified in the below.

We begin by defi_ning normality for by-PRS:

such that

(4.1)

Definition, = A by-PRS is normal if 1n.=n, and ﬁi=ni—1 for every i=2,3,....k-1

1772

and for i=k if nk>0, otherwise the PRS is abnormal, (Note that a by-PRS can

be normal even if the main-PRS is abnormal.)

[Case 1] Normal by-PRS, i.e., ﬁlznz and ﬁisni—l for all i=2.

In this case, (3.18) becomes (with replacement i+l — 1)

prem(P,_.P)) = A8, _ (PP, >H(a /B, =304k, (4.2)
1
1‘[{(~1)‘“r“‘i"“~”i’cr rl*‘”( By =)y, (4.3)
r=
Therefore, if we define &i as
&2 _ Cgl n2+1'
~ o _,-n +1 d. . (4.4)
O(i = Cil_l ! = Ci‘—ly 1=3u4’-.-»k,
then Eiﬁi = &iﬁi—l - (EiPi = prem(P 'Py), 122, Hence, (4.2) becomes
B, = 18, ,(P.P,.B) (/B )H(a /ﬁrﬂ (4.5)
[Case 2] Abnormal by-PRS w1th deg(Piﬁl)gdeg(Pi).
In this case, (3.18) becomes (with replacement i+] — 1)
. i~1
¢ prem(B,_.P) = }isni—l(Pl’PTPl);EIé(&r/ﬁr)" (4.6)
Therefore, if we choose o.'i as
&2 = C’gx_nz*l,
- q (4.7)
&i = ¢t o= ¢, i=3.4,....k,
N A x (n,_,—1;_ )
then ﬁiPi = &P, -QP = ¢ prem(P1 1 P,

and (4.6) is made coincide with (4.5).

[Case 3] Abnormal by-PRS with deg(P,_ )<deg(P)).

- 15—
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In this case, (3.19) becomes (with replacement i+1 — i)

i-1
d .~ _ ~ o~ o )
¢ 1B, = Xisni—l(Pl’PZ’Pl)g(ar/gr)’ i3, (4.8)
Since ﬁiﬁi:&iﬁi—l in this case, we can choose &i freely. Therefore, by
choosing &i, i3, as (4.7), we can make (4.8) coincide with (4.5). The &2
can be chosen as (4.7) if ﬁlznz, If ﬁ1<n2, we can choose 5:2=1 without

contradiciton with (4.5) because we have no constraint on 152 except that
P, e I[x].
Summarizing the above results, we see that formulas (3.18) and (3.19) are

unified to (4.5) by the choice

~
o, -n,+1

& = ¢ if fi,2n else a, = 1
2 2 1 2 2 ’
. (4.4, 4.7)
&, = ¢, 71, i=3,4,... k.
1 1
Then, (4.5) suggests the following choice of E‘i:
B, =1,
' (4.9)
B, = a&_,, i=3.4...k,
which reduces (4.5) to
Pp= 48, (PLP,P), =34,k (4.10)

Note that ii'depends only on main—-PRS and not on by-PRS. Note further that
vy d - ’ ,

A= c AL 4.11)

So far, we have not specified the main—-PRS. In the rest of this section,

two kinds of PRSs are considered: one is the reduced PRS and the other is the

subresultant PRS.

[Case Al When P=P,"°® (the reduced PRS).

+1

’

In this case, Bi is chosen as (2.12). Sub's,titx.lting‘cff-1+I and ci_‘;i-Z
respectively, for a; and Bi in (4.3), we obtain
i—1
_ d,_(d.-1), 4 {(n,_,-n)(n-n) :
Z, ‘g{cr ! (-1) et }. (4.12)
Thus, Ii e I and hence ﬁi e I[x]. Furthermore, since }i is easily calculated
from the main-PRS, we can eliminate 7i from f’i obtaining a polynomial 15i such

that

_16_
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P, = P/ = 8§, _[(P,P,.P). (4.13)

(We have introduced a new notaion Pi to emphasize the elimination of the

factor Xi from IEi,) In order to calculate the sign factor in (4.12), we can

use the following relation which is easily derived from (4.12):

10, = St Dttt a5k (4.14)
Noting that Z3=C§1(d2—1)(_1)

by defining Zzzl. Hence, we obtain the following algorithm,

Algorithm A (reduced PRS/subresultant by—-PRS algorithm),

Input : polynomials F,G,H such that deg(F)=deg(H)=deg(G);

Output: reduced PRS (P,=F,P,=G,P,,...,P,) and

subresultant by-PRS (151:H,§2,.._,Pk);

P, « P, « prem(Pl,PZ) ;

2
P3 — prem(Pl,PZ) ;

while deg(Pi+1)>0 do begin

i it+1;

if i=3 then B « c(znl_n2+_1) else B « cid_il‘l;

if %,_,2n; then 13i — {ci(n*-l_n"-l_l)prem(ﬁi_l,Pi)}/ﬁ
~ 4. x )
else P, «— {c; 1Pi_1}/ﬁ,
1 < X.C:,l_z(di_l——l)(_1)(n1—ni+1'—1)di_1;

~

P, « P/

(d,_,+1) .
P “— prem(Pi_l,Pi)/ci_1 2 ;

i+1
end;
‘return (Pl’Pz’f"’Pi) and (P,.P,.....P,).

[Case B] When PizPi(sub) (the subresultant PRS).

_17_
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Using the relation (-1)ixi=(*1)i which is wvalid for any integer i, we can

derive the following relation from (2.11) and (4.3):

i-1
X0, = (/e ) I];(ar/ﬁr>(—1)‘“r-1"“r“’}‘di-l““. (4.15)
bl
Since p,=1 for the subresultant PRS, (2.15), (2.17) and (4.15) give
I = () = qiels, (P13 D, | (4.16)
i-1
Thus, Zi e | and hence INDi e I[x]. Since ¢, is obtained by the subresultant

PRS calculation, we can eliminate }i easily from ﬁi obtaining the f’i defined

by (4.13). Hence, we obtain the following algorithm,

Algorithm B (subresultant PRS/subresultant by-PRS algorithm),

Input : polynomials F,G,H such that deg(F)=deg(H)=deg(G);
Output: subresultant PRS (P =F,P,=G,P,,...,P,) and

subresultant by-PRS (§1=H,f’2,...,15k);

~

P, « P, « prem(Pl.Pz) ;

2

d.+1
P, « prem(P,,P,)/(-1)"t " ;

i« 2;
£ «~ -1;
while deg(Pi+1)>0 do begin
1« i+1;
if i=3 then B « ¢ else B ¢ fi2:
. ~ ‘ ~ (ni_ —ﬁ-_ fl) -4
if n,_,2n then P, « {¢/ it i prem(Pi_l,Pi)}/ﬁ
else ﬁi — {cidi—lﬁiﬁl}/ﬁz
d, ,,(1-d,.,)
€« (-¢; ;) "2¢ 23
z’ — (—c)(dl—lal);
Pi — Pi/z;
diyy .
PH1 — prem(Piv_l,Pi)/(—ci_lc 1y
end ;
return’ (Pl’P2”"’Pi) and (PI’PZ““’P‘)

)
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§5. Examples

Let us present several examples, We calculate PRSs and by-PRSs with

starting polynomials

8 6 4 3

F(x) = x° 4+ x° - 3x° - 3x +8x2+2x—5,
c(x) = 3x® + 5x? - 4x% - 9x + 91,
Hix) = 2x® + 2x7 + 3x° — 4x° - 9x - 1.

The polynomials F and G are taken from [1]. For simplicity, we write only the
coefficeint vectors in the below,

Example 1 shows the PRS and the by-PRS with Bi=§i=1, where pseudo-division
is adopted to calculate remainders, This example shows the seriousness of the

coefficient growth typically.

Example 1 (original PRS / original by-PRS).

P,: (1,0,1,0,-3,-3,8,2,-5),
P, (3,0,5,0,-4,-9,21),

Py (~15.0.3.0,-9), 8,=1
P,: (15795,30375,-59535), B,=1
P.: (1254542875143750,—1654608338437500), ¢ B =1
Pe: (12593338795500743100931141992187500).: By=1
BL: (2,2,0,3.0,-4,0,-2,-1),

B,: (~9,222,126,-336,-702,603), B,=1
§3: (27945,-65610,—-156735,105705), E3=1
B,: (44436771365624, -85860272261250), B =1
135”. (—34189940388449881177593750000), §5=1
Pe: (0).

_19_
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The result of application of algorithm A is shown in example . 2, As we
see, elimination of the coefficient factor by ﬁi resolves the coefficient

growth problem largely. However, the factor ﬁi is still large.

Example 2 {reduced PRS / subresultant by—PRS).

P, i (1,0,1,0,-3,-3,8,2,-5),
Pyt (3,0,5,0,—4,-9,21),

P,: (-15,0,3,0,-9), B,=1

P,: (585,1125,-2205), : B,=3°

P,: (—18885150,24907500), B,=(-157
Py (527933700). B,=585"
Bo: (2,2,0.3,0,-4,0,-2,-1),

B,: (9,222,126, -336,-702,603), B,=1

B,: (1035,-2430,5805,3915), By=3°

B,: (10033875,-19387350), : B=(-15)°
B.: (339584400), B,=585"
Pe: (0).

P,: (—9,222,126,-336,-702,603),

Py (115,-270,—-645,435), | o | D A,=9

P,: (4955,-9574), : 4,=2025
Pg: (-167696), , : A=—2025,
Py: (0).



Example 3 shows the resulf of application of algorithm B, where

_ d;, -1

A= (¢
Comparéd with example 2, the superiority of algorithm B over algorithm A will
be obvious. However, algorithm B works almost the same as algorithm A when

the main-PRS is normal,

Example 3 (subresultant PRS / subresultant by—PRS).

P,: (1,0,1,0,-3,-3,8,2,-5),
Pt (3.0,5.0,-4,-9,21),

P,: (15,0,-3,0.9), : D B,=1

P,: (65,125, -245), | : B=—3°
P.: (9326,-12300), ’ : B,=15-5"
Pe: (260708). | - o B,=65-137
Bl (2.2,0.3,0,-4,0,-2,-1),

B,: (-9,222,126,-336.-702,603), B,=1

B,: (1035,2430,-5805,3915), B,=3°

B,: (123875,-239350), B,=15"
By: (-167696), B =65
Pe: (0).

P,: (-9,222,126,-336,-702,603),

Py: (115,-270,-645,435), | 1,=9

P,: (4955,-9574), 1,=25

Pyt (-167696), A,=1

Pe: (0).
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