goooboooogn
0 486 0 1983 O 154-165

154

12 DESIGN OF A GENERAL COMPUTER ALGERRA SYSTEM+)
(265 E9) GRmEN (zoeE)
T. Sasaki,*) S. Watanabe,**) and A, Furukaw‘a***)

(Tateak) (sRunro) (A Fro)

x) The Institute of Physical and Chemical Research
Wako—-shi, Saitama 351, Japan

%%) Department of Mathematics, Tsuda College
Kodaira-shi, Tokyo 187, Japan

x%%) Department of Mathematics, Tokyo Metropolitan University
Setagaya-ku, Tokyo 158, Japan

Abstract
The authors are developing a general computer algebra system named GAL. The
purposes of GAL are 1) to provide for users in various fields a powerful and
efficient system for manipulating as general mathematics as possible and 2) to
provide for algorithm implementors a general and efficient language for computer
algebra. The system is decided to be of three-layer structure, the core, the
intermediate layer, and the surface layer, so as to attain data abstraction and
data type clarification., Furthermore, concepts of global data types and local data
typeé are introduced so as to ease the data type handling., This paper considers a
design principle of general comp\uter alg’ebra systems and gives a conceptual

description of GAL.,

+) Work supported in part by The Kurata Foundation, o
+) Revised version of the paper presented at Programming Symposium, Jan.11-13,
1983, Hakone, Japan, -

15

§1. Introduction

D and, independently, Jenks and TragerZ) proposed

At SYMSAC '81, Cannon
modernization of computer algebra systems, Cannon claimed the modern algebra
systems to be such that which "enable a user to compute in a wide range of
different structures’ and which "permitt a user to define the structul;e in which he
wishes toq compute,”"” His claim is nothing but a generalization of algebra systems,
On the other hand, Jenks and Trager proposed a computer algebra language with
"extensible parametrized types and generic operators.,” The approachi of these
authors is apparently influenced by recent theory on programming 1anguages,3’4) in
particﬁlar by abstraction and parameterization of data types, Howevevr, it should
be commented that theirvapproach originateé, via MODLISP,S) fbrom MOD—REDUCE6’7) ‘by
Hearn in 1974. One of the main purbosés of MOD-REDUCE is to enable s&stém
programming using onlyrabstréct data structures, A design of ;:ompu"cer algebra
language baéed on abstract data struct:urés was also Vproposebcrlu by Ausielblo‘rand

Mascarig)

in 1979, although their language handles very low levei d’ata s{ructufés.

Anywéy, computer algebra is rapidly invading a wide area of mathématics, hen’ce
it now necessitates systems Which can handlxe as general mathematics as péssible,
and several ideas have been presented for construc‘ting such systems, This paber
presents another idea. The idea itself is rather traditional com;;ared with those
proposed in recent theory oﬁ programming language but the implementétion is éasy
9)

and it seems to make the structure of the system simple, According to Hoare,

simplicity is a very important condition for system complex.

§2. Reguirements on general. computer algebra systems

We first consider requirements on general computer algebra systems from not only
the viewpoint of generalness and efficiency of the system but also the viewpoint of
large-scale complicated system, Analysis of such requirements is indispensable for

desigm’ng a general algebra system. We think the followings are the most important

=

156

properties of the general computer algebra system:
1) capability of manipulating general rﬁathematics,
2) easiness of sysﬁem programming,’
3) integrability of aléorithm modules,
4) éxtenéibility and maintainabili/ty,
5) aécessibility from casual users,
g) efficiency. |
Let us expléin each of these properties ih some details,

Someone rﬁay say ’that thg existing computer algebra systems such as REDUCE,IO)
MACSYMA,“S o% ;; SCRATCHPADIZ) are enough general to manipulate many kinds of
formulas éppéaripg inv sciencg ’and engineering. However, they are never called
generarl (;bmputer algebra systems. qu example, if one wants to manipulate logical
.formulas asserting a theorem on geometry, none of the above-mentioned systems is
availat‘ﬂ’e,’ A g’eneral computer algebra system should be able to manipulate_ as
general mrathemati'cs és possible, including sets, log'ical‘formﬁlas, and so on,

A general _computef algebra system will cover a wide area of mathemétics, hence
éollaboration of many experts in various fields of mathematics and algorithms is
required to construct the system, These exXperts are not always familiar with whole
algebra ”system, rather they know only about their respective areés of mathematics
~and algorithms. Af‘xﬂlrtﬁermore, obne algorithm module ié usu'ally programmed by _using
manyvother modules programmed by éthers, Therefore, easiness of system programming
and integrability of algorithm modules are crucially important,

A general computer algebra system will become very large—scale, and construction
of a computer algebra systemv usually requires a long period, For example, MACSYMA
was begun to construct more than ten years ago and it is still growing actively.
Furthermore, algorithms are rapidly advancing, hence algorithm modules should be
continuously renewed, Therefore, extensibility and maintainability are also very

important factors, Many of the computer algebrists do not care about this point

although they are . quite enthusiastic for efficiency.. This paper discusses,
however, little about this point,

As for accessibility. and efficiency, we have already enoﬁgh experience and
idears, One notice 1is that efficiency often contradicts with generalness of the
system, QOur viewpoint on this dilemma is that generalness is more important than
efficiency and the system 1is satisfactory only if it is ,effi(;ient in manipulating

large formulas which are often encountered in applications,

83. Three-layer structure of GAL

In making a general computer algebra system satisfy the properties 2, 3, 4, and

157

5 presented above, data - abstraction and data type clarification seem to be

crucially necessary.

Data abstraction®’ is such that the internal data structures are masked: from the
users as much as possible and oﬁly Weil—defined abstrécﬂt operatioﬁé afe prepared
for the usérs to make accesé to the daté structures, Hence, the prbgr'e‘mﬁx‘me‘rs are

maximumly - free from the complication of internal data structures, Consequently,

programming becomes easy and compatibility of programs by different programmers is.

attained so far as the programmers do not define their own data structures
globally. Furthermore, integrity of the system increases because the programmer

cannot manipulate internal data structures. arbitrarily,

+ surface layer
; (user's level)
+—— | ———— intermediate layer
| (algorithm implementor's level)
+—————— —— core
‘ (system administrator’s level)

Fig.l1. Three-layer structure of GAL.,

Considering the point discussed above, GAL is designed to be of three-layer

structure, the core, the intermediate layer, and the surface layer (see Fig.l).

The core of GAL constitutes an algebraic programming system: it prepares many
predicates and operators on algebraic data tybes defined in the core., The data
structures defined in the core are completely confined to the core and masked from
the outside. The core is programmed by several system administrators, and other
system implementors (algorithm implementors) and users can have access to the
internal data structure only through the programming language defined 'in the core,
The language s, however, detaileci enough to program efficient algorithm modules,
With this design of the system, the system administrators, who are responsible to
the 'most complications of system -construction and maintainance, may have only to
worry about the core as well as interfaces to other layers and nothing else. The
followings are examples of procedures for handling explicit data types:

PLUS:ALGNALGN(U, V) : <ALGNumber>
PLUS:ALGNPOLY (U, V) : <ALGNumber>
PLUS:ALGNRATF (U, V) : <ALGNumber>

PLUS:ALGNALGF (U,V) : <ALGNumber>
etc.

<ALGNumber>,
<POLYnomial>,
<RATFunction>,
<ALGFunction>,

++ + +

“The intermediate layer consists of an assembly of many algorithm modules, such
as polynomial factorizer or differential equation = solver, This layer will be
constructed by collaboration of many experts in different areas of mathematics and
algorithms, Because the modules are programmed in a common pfogramming language,
the modules may bécome universal if the language is standardized. Standardization
of a language for computer algebra is eagerly desired because most modules in
algebra systems are quite laborious to program. Note that, in our design, we can
change data structures in core without damaging the modules in the intermediate
layer,

.The surface layer provides an application-oriented language for the users in
‘various fields., The language should be simple enough to use even by a casual user.
Current GAL adopts an extended REDUCE language, because it is elegant as well as

popularlized and suited for this purpose,.

139

§4. Global and local data types

A general computer algebra system is one of the systems which handle so many
cémplicated data types, Data types in algebra systems are in general nested
multiply, and single datum is often given rﬁore than one datav type. Hence, in order
not to make the users algorithm implementors confused in handling data types, the
data types should be well-classified and clearl& defined and they should be handled
easily by every programmer, i.e., data type clarification i§ required, Without
data type clarification, programming by several algorithm implementors will soon go

to self-inconsistency of the whole system.

intermediate layer +——|———— local data types
| (defined in algorithm modules)
core +—————— | — —— global data types

| (defined in core)

Fig.2. Two kinds of data types.

In order to attain the data type clarification, GAL introduces new concepts on

data types, global and local. The global déta types are defined by the system
administrator in the core of GAL, and any user/algorithm impleméntor can use them,
Global data types are used not only in application programs but also in alkgorithm
modules and for communication among different modules_‘ Therefore, every algorithm
implementor should be familiar with the global data types. On the other hand,
local data types are defined by implementors of algorithm modules and éonfined to
the modulkes concerned, Local data types are defined only for constructing
algorithm modules such as those for group theory, and most users and algorithm
implementors need not. know each of local data types, Furthermore, different
algorithm modules may define the same local data types. Figure 2 illustrates two

kinds of data types in GAL.

160

If we define all the necessary data types as global, specification of the global
data types becomes very cofnplicated. Such a complicated scheme of data type
specification is hard to handle for most users and algorithm implementors, In the
GAL, we define onlly a minimum number of basic and absolutely necessary data types
as global, and other detailed data types are defined as local (see, §5). This
poli’cy will make the handling of data types>quite simple: a algorithm implementor
has only to know a Vminimumk number of global data types and he may define his own
data types without considering others.

For example, the current GAL defines data types of sets as global but no data
types for groups. The data types of sets are absolutely necessary in implementing
group theory. However, group theory itself is complicated in structure and the
implementation requires ‘a nﬁmber of program modules. Hence, data types which are
peculiar to group theory should be defined in modules for group theory and they
should be used only within the modules, That is, the data types for groups are
treated as local., With a _similar reason, the éore of GAL does not contain many of
the generic data types such as ring or field.

vNote that, in the above schemé of data type definition, the global data types
should be enough general to allow good communications among algorithm modules,
Without this property, integrability of the algorithm modules cannot be éttained,

Therefore, we must specify the global data types most cleverly,

§85. Internal representation in GAL

Data type clarification, extensibility, and efficiency are leading principles in
designing internal data structures in GAL. Following these principles, we decided
the internal data structures to be as follows,

1) We make the classification of data structures as simple as possible, vThe GAL
is being implemented in LISP and all the‘data structures in core are classified by

the following simple scheme:

161

yes |———> HEBasic NUMber
| (integers, rational numbers,
| and floating—point numbers)

yes |————>| ?2BNUM |———]| further type check by Lisp
I l
1 l
| no |———> [IDentifier (symbols)
I further type check by p-list
?2ATOM | ——| . ,
i
A | yes |———> B CANOnical :
| l | (ALGN, POLY, RATF, etc.)
|] | further type check by
f no |———>| ?CANO |——| expression tags
| |
I l
| no |——> B PREFix—form
| (elementary functions, ‘etc.)
l further type check by p-list
|- no
|
yes . 3
?ARRAY > B ARRAY

Fig.3. Classification of data structures,

Here, CANOnicals and PREFi);wforms are of the form
CANO : (expression—tag . actual data structure),
PREF : (operator-name . list of operands),
respectively.

2) Expression representation in GAL is simple in that every expression is
represented by one scheme and the .user has no option of’ choosing data
representations, This is consistent with the principle of 'dkata abstraction.

The following BNFs give a brief desc-ription of the data structures:

<Gal EXPRession> ::= <Basic NUMber> | <IDentifier(symbol)> |
<CANOnical> | <PREFix form> ;
<CANO> ::= <unstructured CANO> | <structured CANO> ;
<unstructured CANO> ::= <ALGNumber> | <POLYnomial> | ... ;

<structured CANO> 1= <VECTor> | <MATrix> | ... ;

<PREF> ::= <FUNCtion> | <Constructor EXPRession> ;

<FUNC> ::= <function name> ., <operand list> ;
<operand> = (<GEXPR> - <structured CANO>) ;
<CEXPR> ::= <CONStructor> , <term list> ;
<term> ::= (<GEXPR> - <structured CANO>) ;
<CONS> ::= <rational CONS> | <set CONS> |

<relational CONS> | <logical CONS> ;

Here, constructors are identifiers to construct expressions, and the current GAL

prepares the following constructors:

rational- CONS : C+ (plus), Cx (commutative times), etc.,
set CONS : S+ (union), Sk (intersection), etc.,
relational CONS : R= {(equal), R> (greater than), etc.,
logical CONS : L+ (logical plus), Lx (logical times), etc,

In our scheme, noncommutative elements are prefixed by the constructor NCx and
classified into prefix—forms,

3) The expression—-tag for a canonical is a short integer., The current GAL
assumes the tag field to have 24 available bits which are dividedr into three parts
and used as follows: |

1" word / 32 bits

o l
xkxkLisp tagsxskxk| type tag

l
[type tag | domain tag
{untouchable) |(global type) | (local type) |(property tag)
| I | '
31 24 23 16 15 8 7 0

Fig.4. Specification of expression-tag.

The first part (23rd to 16th bits) is used for the global type tag. The second
part (15th to 8th bits) is released to the algorithm implementors for defining
local types. . The third part (7th to (Qth bits) is used for the domain/property tag.
The first byte (31st to 24th bits) is used for a Lisp tag and GAL cannot handle
it.

4) The followings are global data types defined in the current GAL:

ALGN (algebraic number), HALGNY « 1,
POLY (polynomial), : HPOLYH <« 2,
RATF (rational function), HRATFH# « 3,
ALGF (algebraic function), HALGFH « 4,
VECT (vector), HVECTH < 5,
MAT ‘(matrix), HMATH < 8,

TENS (tensor), HTANSH « 7,
INTVL (interval), HINTVLHE « 8,
FSET (finite set), HFSETH « 9,
FOSET (finite ordered-set), HFOSETH « 10,
INFSET (infinite set), HINFSETH « 11,
INFOSET (infinite ordered-set), HINFOSETH « 12.

The domain/property tag.for INTVL is one of 00, OC, CO, and CC denoting (), (1,

[), and [], respectively. Domain/property tags for other data types are

INT, (integer), HINTDOMYE « 1,
BNUM, (basic number), HBNUMDOMH: « 2,
ALGN, (algebraic number), HALGNDOMHt « 3,
POLY, (polynomial), HPOLYDOMH « 4,
RATF, (rational function), HRATFDOMHE « 5,
ALGF, (algebraic function), HALGFDOMH « 8,
GEXPR, (GAL expression), HGEXPRDOMY « 7.
The domain/property tags specify the canonical expressions in details, For

163

example, domain/property tag "INT"” for polynomial means that the polynomial is of

integer coefficients and that for finite set means that the elements of the set are
integers, Current specification of type tags and‘ domain/property tags favoré
polynomial and rational function arithmetic, However, we have enough space.i of
introducing new type tags and domain/property tags.

Integer tags have many advantages over the name tags such as @MATRIX or @SET.
First, integer tags can contain much more information than name tags: type, domain
and more information can be represented by only a shortrinteger. Second, integer
tags are naturally ordered according to their largeness, and the ordering is useful
in classifying data types. For example, data types of global type tags greater
than or equal to HVECTH are structured canonicals in the current GAL. Third, by
tabling every procedure for each data type, we can efficiently call the procedure

by specifying only the type tag.

86, Discussions

The largest weakness of our design is lack of completeness of the data type

specification, In. our design, f requirements on global data types are quite severe:

._10_.

164

the global data types should be enough simple for most users/algorithm implementors
and, simultaneously, they should be enough general to allow implementation of as
general mathematics as possible and to allow good communication among - algorithm
modules, The authors themselves do not think that- the global data types in the
current GAL are satisfactory., We must improve the specification of global data
types again and again. |

In order to accomplish completeness of data type specification, the most
desirable way is to define thre data types axiomatically. In this sense, the
approach of Jenks and Trager2) seems to be promising, However, the more
mathematical the system 1is, the rhére difficult to handle the system is for
nonmathematioians; Generally speaking, we may classify the algebra systems into
two types, axiomatic a‘nd pragmatic, Which tybe of the system is better? Perhaps,
this 1is thé curreﬁt largést problem in designing a general computer algebra

system,

Acknowledgements
The authors would like to thank Dr, Y. Kanada and Mr. H. Murao for valuable

discussions.

References
1)-J. J. Cannon, "The basis of a computer system for moderﬁ algebra,b" Proc, 1981
; ACM Symp. on Symboﬁc and Algebra/ic Computation, ACM, 1981, pp.1-5.
2) R. D. Jenks and RB. M. Trager, "A language for computational algebra,” ibid.,
pp.G-f3.
3) B. H Liskov and S. N. Ziles, "Programming with abstract data htypes," Proc. ACM
Conf, on Very High Level Languages (SIGPLAN Notices Vol.0, No.4. 1974),

pp.50—59.

165

4) J. N. Thatcher, E. G. Wagner, and J. B. Wright, "Data type specification:
Parameterization and the power of specification techniques,” Proc. SIGACT 10th
Annual Symp. on Theory of Computing, 1978, pp.119-132.

5) R. D. Jenkks, "MODLISP: an introduction,” Proc, EUROSAM 79 (Lecture Notes in
‘Computer'Sciénce No.T72., Springer—Verlag, 1979), pp.466-480.

) A. C. Hearn, "A mode analyzing algebraic simplification program,” Proc, ACM 74,
ACM, 1974, pp.722-724.

7) M. L. Griss, "The definition and use of data structures in REDUCE,"” Proc. 1976
ACM Symp. on Symbolic and Algebraic Corﬁputétion, ACM, 1976, pp.k53—.59..

8) G. Ausiello and G. F. Mascari, "On. the design of algebraic data. structures with
the approach of‘ ab’stract data types,” Proc, EUROSAM 79 (Lecture Notf;s in
Computer Science No.72, Springer-Verlag, 1979), pp.514-530. |

8) C. A. R. Hoare, "The emperor's old clothes,” Comm. ACM Vol.24, N0.2,y D‘i).75’—83k
(1981). |

10) A. C. Hearn, "REDUCE-2 user's manual,” 2nd Edition, Deptr,v Corﬁbﬁ‘éef Sci‘ence,
University of Utah, 1973. | I

11) The MATHLAR group, "MACSYMA reference manual,” 9th Version, 'Laboratory for
Computer Science, MIT, 1977. | | ‘

12) R. D. Jenks, "The SCRATCHPAD language,” Proc. ACM Conf, on Very High Level

Languages (SIGPLAN Notices Vol.9, No.4, 1974).

12

