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Contractions on Hilbert space

/ﬂ%ﬁ\t} ﬁ%ﬁ%’/{ ﬁ\j .\_]_) 'f)’ﬁ(Mitsuru Uchiyama )

Let T be a contractioh ,that is {lTIlil , on a separable
Hilbert space #. Then D, = (I-T*T) /2 is well defined, which
is called defect operator of T. In this case we have g(kaS '
where D and E’denote'the open unit disc and its closure respe-
ctively. Contractions which have defect operators of finite
ranks have been studied by many mathematicians. For investiga-
tions of contraction T with DT,G(g,c) , that is I-T*T€&(y,cC),
where {(oc,c) and (7,c) denote the Hilbert Schmidt class and the
trace class respectively, some mathematicians added a condition
o(T)# D . Such a contraction T was called weak contraction by
M.G.Krein. The spectral decomposition for weak contraction T
Or accretive operator

(I+T) (I-T)*
- were obtained by Sz.-Nagy and Foias,Brodskii and Ginzburg (cf
071 .
Since T is a éontraction,!]Tnxll is decreasing for each

X. Sz.-Nagy and Foias defined contractions' classes as following:

Ci.= {T: 1lim ||T"x|| >0 for each x#0 },

n-w
Co. = {T: lim ||T™"x]|| =0 for each x 1},
n 00
Ca= {T: T*¢Cy. } , C.= {T: T*€Co. } ,
= < ‘. . .
Cij Cf f\C.j ( O_Vl,]i 1)

These formal notations are playing important roles in the studies
of contraction. In particular they showed that every weak con-

traction in Cy belongs to C, (about this notation see [7]),
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and eveiy weak contraction is decomposed to direct sum of the
contraction in Cs and the contraction in Ci: . The Jordan
models for weak contractions were constructed by P.Y.Wu [10].

In [9] the author applied the results of Bercovici and
Voiculescu's paper [1l] to investigate a contraction T satisfy-
ing o (T) = ,]5’ and DTG(G,C) ; in particular,showed that T
belongs to Cp iff there is a quasi-affinity X such that

XT-= SE X,
where E is a Hilbert space with dim E = - index T (this "index"
is Fredfolm index ) and S; is the unilateral shift on () (E).
From the results of [9], he conjectured that contraction in Coo
with (0,c)-defect operator belongs to C; . In [8] Takahashi
and Uchiyama showed that this was true.

In this note we will clear the structure of a contraction
T with DT in (0,c). In particular, setting |

o= min {dim N(T-A):A€D }, B= min {dim N(T*-1):1€D },
where N(T)= {x: Tx=0 }, we will show that there are vector va-
lugd holomorphic functions hi(k), fj(A) (1<i<a ,1<j<B )
defined on D satisfying

(T—A)hi(A)z 0 , (T*-X) fj(A)z~0
, and that if o= B= 0 , then T is a weak contraction.

In section 4, we will study the weighted shifts with finite
matrices' weights. |

From now on, we use the symbol D{(T) instead of D, for

T

convenience



1. Upper triangulation

Let T be a confraction on J£ with D(T) € (g,c). Then,
since I (1- HTeiH?)<00 for a C.0.N.B. {e,} of K, we
have dixjr; N(T)< « . Let T=V|T| be the polar decomposition of
T . Then there is a isometric ( or co-isometric ) extension
Vy of Vv such that V1~V is of finite rank. In this case
dim N(V3-1) is constant on D and finite , also dim N(V;*-\) is
constant on D. Since range(Vi-A) is closed (V;-X) is a semi-

Fredholm operator, and index(V;-A) is constant on D.

Since T-A=V,- M (V-V,)-V(I-]|T|),T-A is a semi-Fredholm operator, -

and index(T—A)'is constant on D and less than « . Thus we have
(1.1) o(T)N\D = {ap(T)Uap(T*)}nD .

Now we notice that if dim N(T*) is finite , then (T-1)
is a Fredholm operator for each A€D.

From the definition of C;. it follows that
(1.2) GP(T)f\D = ¢ for TE—Cl.V

In this section we obtain an upper triangulation of T
whose diagonal elements were already studied.

The next lemma is trivial, but for the sake of the comp-

leteness we prove it.

Lemma 1l.]l. Let Y be a bounded operator and F a Fredholm



operator such that FY€(t,c). Then we have Y&(t,c).

Proof. There are bounded operators F' and P such that
F'F = I-P , range P = N(F).

Thus (I-P)Y = F'FY € (1,c) implies Y =(I-P)Y+PY € (1,c). Q.E.D.

Lemma 1.2. Let T be a contraction with D(T) € (o,c) and

let

To. B ]
(1.3) T = J
10 Ti.

be the decomposition of T such that T¢€Co. , Ti1.€Ci:. (seel7]).

Then D(Ty. ) and D(T;. ) are in (g,c) and B in (t,c).

Proof. Since I-T*T¢€ (1,cC),

I-Ty. * Ty ;, B*Tg. and I-(B*B+T;. *T;. )
belong to (T,c),where I of "I-T, * Ty " is the identity on the
space . where Ty. is defined. From nextllemma , it follows
that Ty. 1is a Fredholm operator. Thus , by Lemma 1.1, we have

B €(t,c) and hence I-T). *T;. € (T,c) . Q.E.D.

Lemma 1.3. Suppose To.€Co. and D(T,. )€ (0,c), then

Ty. is a Fredholm operator.

Proof. Let

(1.4) To. =

39
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be the decomposition of To. satisfying T¢,€Co; and TE&C,,([7]).
Since I-Tyo. *To. €(T,c),>I—T01*TDL , A*T-and I-(A*A+T,* T,)

are in (T,c) too. From (1.2):' we have OP(T01*)ﬂD= ¢ ,hence Ty,
is a Fredholm operator. Consequently, from Lemma 1.1 ,A€(r,c)
and hence I—TO*TOE(T,C).Since To€Coo , we have T &Cy [81,

which implies dim N(T,) = dim N(T *)<= [7].Therefore T, is a

Fredholm operator. Thus

To1 O 0 A
To. = +
0 To 0 0
is a Fredholm operator. Q.E.D.

Lemma l1.4. Suppose T;. € Ci. and D(T,;. JE(o,c) and let
Ti. =

be a decomposition of TI.‘such'that T1€C1; » T.0€C.o ([7]).

Then D(Ti1:1) and D(T.,) are in (o,c) and F in (t,c),and T.€Cy,.

Proof. I-T11*T11 , F*¥T 13 and I-(F*F+T.*T.,)belong to
fT,c). From (1.2) we have
Op(Trl)f\D = ¢ and Gp(Tll*)f\D = ¢ ’
and hence , by (1.1) we have
(1.5) O(Tll)[\D = ¢ .
Thus F € (T,c) and hence I-T.p*T., € (T1,c). To show T.,€Cyqo

decompose T.o as



(1.6) ’ T.o = ,

where Too€Cyy , T14€C;y . Then we have I-T,,*T,,€(t,c) and
hence Ty ,6Cy; , from which we get

(1.7) o(Tyee)N\D # D .

Denote the space on which T;. is defined by L , and let

I,= Ll@i2® *ts be a decomposition of Z corresponding to

z

Ty, Fy F,

where [ F, , F, ] = F . Set
Ty Fy
(1-8) T2 = .
0 Ty
Then, since T,= T1'|—51®L2 , we have T,€C;. and D(T,)€(oc,C).
Above triangulation of T, implies that
6 (T2) C o(Ty1) Uo(Tee) -
From thié relation and (1.5),(1.7), it follows that
o(T,)N\D # D .
Therefore T, 1is a weak contraction. The Cy- C;, decomposition

of T, ([7]) implies T, has no C,-part , because T,€C;. , and

so TbeC;, . From (1.8) we have Too*=T2*|JI/ ,which belongs to
’ 2

Cy. and C;. ; this is impossible. Thus [,reduces to 0,so that

from (1.6) we have T.,= T,,&C;, . Q.E.D.

41
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Theorem 1.5. Let T be a contraction with D(T)¢& (o,c).

Then we have an upper triangulation :

Ty,
*
0 To
T = 0 0 Ti11 ’

where D(Tg;) , D(Ty) , D{(T;:) and D(T;,) belong to (o,c),and

To1€Co1 , To €ECp , T11€Cy; , T10€C30, and * belongs to (1,c).

Procf. At first, decompose T as Lemma 1.2 ,next decompose
To. as (1.4). In the proof of Lemma 1.3 we showed that Ty,
and Ty satisfy the conditions in theorem. At last decompose

T;. as Lemma 1.4 and set Ti;o= T.g . Q.E.D.

Definition. Above upper triangulation is called the

canonical triangulation for T with D(T) € (o,c).

Remark.We showed that Ty;and Ty, are Fredholm operators

. and T;,; is invertible. But dim N(T;.*) may be infinite.



2. Eigenvectors

Let T be a contraction on J€ with D(T) € (0,c). Set
¢ = min {dim N(T-1):X€D} , B= min {dim N(T*-X):X€D} ,
i(A)= dim N(T-A)-o (<» ), A={X€D:i(X)>0} .
Now we note that if a bounded operator A is decomposed as
Ay Ay
A = , where A; is a surjection,
0 A,
then dim N(A)= dim N(A;) + dim N{(A3). In fact, we have
N(A) = N(A1) + {(- B? A2x , x): x€N(A5)} ,

where B is the restriction of A; to N(A;)

Theorem 2.1. Let T be a contraction with D(T)€(o,c) .And
consider the canonical triangulation of T. Then

a= dim N(T¢;) and B= dim N(T;o*)

Proof. At first, we notice (l.3).vsince OP(TI;)ﬁD=¢ ’
it is not difficult to show N(T-X)= N(Ty.-A) for A€ D. Next we
notice (1.4). Since D(Ty;)€(0,c) and Up(T01*)ﬂD = ¢, (To1=-A)
is a surjection for each XD . Thus we have
(2.1) dim N(T-A)= dim N(Ty.-A) = dim N(Ty;-1) + dim N(Tyz-2A)

= index (Ty,-)) + dim N(T,-A)=index T,y + dim N(T,=1).
To€ C, implies that o(T, )AD is countable. Hence we have
= index T,; '= dim N(Tq;) .

To show B= dim N(T;,*), take the adjoint of (1.3),that
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is

0 Ty . *
Since op(Tl.)nD =¢ and D(Ty.)E(0,c), (T,.*-A) is a surjection
for each A&D . Thus we have

dim N(T*-A)= dim N(T; .*-A)+ dim N(To.*-}1) .
From (1.4) , it follows that N(Ty .*-A) = N(T,*-A) for A€ED,
because op(TDl*)r§D = ¢ . Now we notice the decomposition Qf
T,. in Lemma 1.4 and remark that we set T, instead of T., in
the canonical triangulation of T . Since op(T?l*)nD =9
it is clear that N(T,.*-A) = N(T;,*-A) for A€D., so that
dim N(T*-)\) = dim N(T;,*-A) + dim ﬁ(To *-)) .

Consequently we have g = dim N(T;o*). Q.E.D.

Corollary 2.2. Let T be a contraction with D(T)€l(o,c).

Then g (I-]A])iA)< = .
AEA ‘

Proof. From (2.1),we have i(\)=dim N(T;-A). Thus ,by([7]

we can conclude the proof. Q.E.D.

Theorem 2.3. Let T be a contraction with D(T)& (o ,c).
Then there are holomorphic vector valued functions hi(l), fj(x)
,(;i;ia ¢, 1<3i<p ) defined on D such'that

(T - 2) hy(A)

1

0 (T*-)) fj(x)s 0,
and for each )eD {hl(x),...,ha(k)} are linearly independent,

also {fl(A),...,fB(A)} are . In this case , setting



i
L = \/ {hi(}\),fj()\):i',j,ﬂ,PLTIL is a weak contraction.

Proof. We showed that Tyy .in the.canonical triangula-

tion of T is a Fredholm operator. Hence

To1*(I- To1To1*) = (I-To1*To1)To1* € (7,¢)
implies,by Lemma 1.1, D(Ty:%*) é(o,cj. Therefore there is a
quasi-affinity X such that X To1* = SEX . where
dim E = -index Tp:1* = dim N(Tgy;) = a<w [9]. Let
{el,...,ea} be a C.O.N.B. of E . Then gi(A)={ei,Aei,X2ei,...}
(1< i<a) is holomorphic function defined on D with value in

Qi(E). And for each €D {g;(A),..., ga(A)} are orthogonal

each other. It is trivial to show that

- = \A _p2
(Sg* = Mgy ) =0, Mg () =24® .
Since T01X*=X*SE*, .
X*gi(k)
hi(k)= 0 (1< i<a )
0

satisfy the conditions given in the theorem. Since T;,€C;,
and D(T,,) € (0,c) , there is a quasi-affinity Y such that

Y Tio= SF Y ; where dim F = B<w
We can show the existence of - fj(k) with the same way as above
; hence we omit it. We must show the last assertion. To this
end, we notice that {hi(x):li i<a , A€D} and
‘{fj(x): 1< j<B , X€D} span the‘spaces on which Tg; and T4,

respectively, are defined . Thus , by Theorem 1.5 we have

10
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Ty *
(2.2) PL TJL = 0 - .
Innthis case * clearly belongs to (1,c). Now we set ?ﬂzngLL'
From (2.2) ,D{(Ty)€{o,c) and D(T,;,)€(c,c) imply that

DUQQ € (0,c). Since T;; is invertible , we have

Up(T-t)z GP(TO) UP(TL*) =UP(T0*) .

To€Cy, implies that op(To*)= cp(To) # D [7]1. Thus by(1.1)
we have o(?c)f\D = Gp(To) = A # D . Thus ?ﬁ is a weak con-

traction. Q.E.D{

Theoremxz.é. Let T be a contraction with D(T) & (o,c) ;then
the following are equivalents:
(a) o =8 = 0; |
(b) T is a weak contfaction ;

(c) T is decomposable ( about definition see [2]).

Proof. (a)==>(b): from Theorem 2.1. N(Ty;)= 0,which implies
Ty; is a weak contraction. Thérefore there is a Cy-C;; decom-
position of Ty; , but it is impossible , because T(,€Cq;
Thus the spacé on which Ty,; is defined reduces to 0. Similarly
the space on which T4 is defined reduces to 0. Thus ;£4in
Theorem 2.3 is H . Therefore T is a weak contraction.
(b) = (c) : This was shown by Jafarian [5].

(c) =9 (a): Since decomposable T has the single valued extension

11
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property, a=0 follows . Thus for A%A , {T-1) is injective
semi-Fredholm operator. Hence OR(T)[\D C A. Thus we have

o(T)\D CA (see p.30 of [2]). Consequently B= 0 .- Q.E.D.

PropositiOn’Z.S. Let T be a contraction on J with
D(T) € (0,c). Then TEC;, if and only if there are vector valued
holomorphic functions hi(X) such that

(T* =\)h, (A)=0 , V h,(\)=% .
1 i 1

Proof. "Only if" part follows from Theorem 2.3 and its
proof. We must show "if" part. Since

T*nhi(A) = A"

h;(A) »0 as n > =,
T strongly converges to 0 on linear spann of {hi(l):i,k}.
Suppose

Tl X, > 0 (n» « ) and X; > X (i> o).
since ||T*7 x|| <IT*" x ||+ ([T (x=x Ol T %]+ x-x, ]
we have g%ﬁJIT*nXI]i lx-x, || . Since we can make the right
side arbitrary small, x5 0 (n> «)., Thus T belongs to C., ,
therefore the canonical triangulation of T becomes

-

Ty % ]
0 Ti1o
Let P be the orthogonal projéction to the space which T, is

defined on . Then we have

0 =P (T*-}) h,(A) =P (T*=A)P h, (1) = (To*-A)P h, (V).

12



Since UP(TO*) are countable , Phi(A)EO. Consequently P5_€= 0

and hence T=T;; . Q.E.D.

Alternately we have

Proposition 2.6. Let T be a contraction on J2 with
D(T) € (o,c). Then TE€Cy; iff there are vector valued holomor-

phic functions fj()\) defined on D such that
(=) £500 =0 V £L00 =R .

JjaA

3. m—~accretive operators

Let A be an m-accretive operator densely de‘fined in X

(about the definition see [6]). Then
(3.1) T = (A-I) (A+I)7
is a contraction defined on # and

o, (T) ¥ 1 and T* = (A*-I) (A*+I)!
(see Chap I of [7]). It is trivial to show that

((I-T*T)h,h) = 4 Re (A(A+I)*h, (A+I)'h) for he ¥ .

Since A(A+I)* and (A+I)?! are bounded , we have a relation:

I-T*T € (1,c) & ud) € (t,c) ,

where u(A)=Re((A*+I)’1A(A+I)'1); In this section we denote the

13
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open right half plane by € . The mapping

v:ou M o+l
transforms 2 onto D. It is clear that
(3.2) (A-u)x=0 & (T- ¥ (1)) (A+I)x=0 .
Set |
a= min{dim N(A-u) :ueQ}, B= min{dim N(A*-u): peQ} ,

i(u)= dim N(A-u)=-a , P={u : i(u)>0} .

Proposition 3.1. Let A be an m-accretive operator densely

defined in . If u(A) €(1t,c) , then it follows that

ISR A <o
ner

Proof. Since range of (A+I) is &, by (3.2), we have
dim N(A-y) = dim N(T-$(u)), e=min{dim N(T-1):X€D},
dim N(T-A)-o = dim N(A-y* (\))=-a = i (P (X)) ,
{x: iy (A))> 0} = y(I). |

Thus from Corollary 2.2 , it follows that

z (1-{AD)- i@ AN))< =
A€y (T)

so that T (1= Jy) ) i(u)< .
per

Therefore we have

g B M ()< e  (cf. p.132 of [4]).
uer 1 +|u]2 :

Theorem 3.2. Let A be an m-accretive operator -densely

‘defined in F. If u(n) & (t,c), then there are vector valued

14
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holomorphic functions xi(u), yj(u), (1<i<a,1<j<B ) defined
on @ such that

(A-u) x;(u) = 0 and (A*-y) v =0 .

Proof. From Theorem 2.3, for T defined by (3.1) there
are holomorphic functions h, (A) (1<i<a) such that

(T-1) h, (X)) 0 .

Then x; (0) = (A+I)7h, (Y ()
is a holomorphic function defined on Q ,and for each ueQ
xi(u) belongs the domain of A. From (3.2), we have

0.

(A-u) x, (u)
We can similarly show the existence of yj(u) from the alternate

relation of (3.2), that is

(A*-u)x = 0 & (T*-y(u)) (A*+I)x = 0 . Q.E.D.

4., Weighted unilateral shifts

in this section we study weighted unilateral shifts with
(o,c)- defect operators. Let E be an N-dimensional finite Hilbert
space, and An(n=0.l.2...) invertible contraction on E. Let T
be a weighted unilateral shift on Qi(E) defined by

T {X0,X1,--. } = {0;RA¢x¢,A1X1,...}

15
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Lemma 4.1. Let B be an invertible operator on E. Then
we have
N-1 -1 N
HB—-1H< HB” - 1 < HBIH
~Taet B| |det B
Proof. Let A1> oo 3KN > 0 be eigen values of B*B.

Then we have

N-1 N-1
. 1 A _ lIs*B]|
18412 = || B*B)Y|= 5= < iy = 'c'aet lg*m :

) N
Thus we have B N-1
e || el

The second inequality similarly follows (cf. p.200 of [3]).Q.E.D.

Now we remember next fact:
for scalar a, such that 0< [an|<l , }an}converges
o n=0
iff I (1- laj )< =
n=0

Theorem 4.2. Let T be a contractive weiéhted éhift
defined above. Then the following are équivalents
(a) T &€C,y :
() D(T) € (o,c) ;

(c) T is similar with simple sift SE ;

(d) there is a &> 0 such that

I LNERE Agx || >8|{x || for every x€E and every n

Proof. (d)=»(c): For each m we have

|| A AolA ;... Aot x|

m+n  Pm X”=”Am+n'” AmAm—i.f'

> 8| a 1o A x || >6 ESIEER

" —lAge e B
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because each Ai is a contraction. Thus for each feﬂi(E) ,
we have 7

| " ¢ I >8]l for every n.
By the well known Sz.-Nagy's theorem, T is similar with an
isometry V . Since T belongs to C.o , so do V, hence V is a
unilateral shift . Since

dim N(V*) = dim N(T*) = dim E = N

- dimension. of the wandering space for V is N. Thus V is unitari-
ly equivalent with Sg -
(c)=(a): This is obvious

(a)=>(d) : Set 0(x) = 1im || T" {x,0,0,..} || for x€E.

>0
Since /Z is continuous and 2(x)#0 for x#0 , there is a
§ >0 such that

Lx)> 6 for x in the unit surface of E.
Since flax)=|al] f(x) , we have |

Lin || A -2 x || = £60> 8l x|l for xe=.

n > ;
(b)==2(d) : From

# > lz-rxell = 2 flz-a *a > E fl1-2a %20l .

n=0 n=0

m (1- | I—An*AnH )
n=0

it follows that

converges and we denote its limit by 8§2. In view of
1
14
1- || 1-A.*A. ||
i i

i

1112 _ ~1 _ T Ty -1
lal P= a7 = [ (-@-a*a,0)7 || <

17
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we have
PP | P ||
Faam 2o I 2 T T2 R T T

n

> I, -lE-a,*a () [|x|1? > 8%x||? -for every-n.

(d)=(b) : Since each Al is an invertible contractive matrix,

we have |Il—An*An[|= 1- min {A: AGOP(AH*AH)}
N - - " 1= 11 2'ﬁ 2(1—__1_7_—
la *a )t A ]
from Lemma 4.1, 4
|det a_|
< 2(l-—=7—) < 2(1- |det A_|).
a_IFf

From (d) and Lemma 4.1, we have

|det a_| ..... ldet Ay |= |det (A_...A,) |
EL[ENPRVS oY | 1
which implies that I |det An! converges, and hence
=0
I ||1- a_*a_|| < 2 5 (1- |det A_| )<= . Q.E.D.
n=0 n“nit=" 25 n

18
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