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1. Introduction

Finite automata have ©been used to define not only

languages but also w-languages, i.e., sets of w-words (or

w-sequences) ap&q8o-.+ Over some alphabet. In the case of usual
languages (of finite words), there is the standard notion of

acceptance; the one to specify the set of final states. On the

other hand, in the case of w-languages there is a variety of

notions of acceptance.

Suppose that M = (S, =, §, sO) is a (deterministic) finite

automaton (S is the set of states, I is the input alphabet, S
is the transition function from $ x I into §, and s, (€ s) is

the initial state). For an w-word o = aga a, -+ OVer T let

M .
Run (o) denote the set of states which M visits in reading o

and let Run'(¢) denote the set of states which M visits

infinitely often in reading o. Then, in the 1literature,

following w-languages are used as "the w-languages accepted Dby

M":
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o, (M, F) = {o | Run''(¢) N F # 9},

1
02(M, F)

{o | run™(e) ¢ 73,

In

03(M, F) = {a | _13_1_1___11M(oc) NnF # g},

!

0, (M, F) = {a | _R_1_1___n_M(oc)
o(M, &)

Here F (€ 8) is a set of states and F is a class of sets of

Fl,
31.

m

Ao | gggM(a)

states. Let 01, ses 0“, R denote the classes of w-languages
of the forms Ol(M, F), ... , Ou(M, F), 0(M, 3) respectively.

There are some other definitions of acceptance (see, for
example, [2] - [5]) but the resulting classes of w-languages
coincide with some of 01, ees 5 0y, R or their Boolean
combinations.

Now a question arises: Can we think of any other kind of
acceptance to define a new interesting class of w-languages?
OQur work towards this question is motivated by the observation
‘that all the conditions mentioned above and some others can be
expressed by certain first-order formulas. For example, the
condition Eggwka) N F # @ used to define OB(M’ F) can be
expressed as ;ﬁ: vi 3j (i <3 A Ps(j)), where Ps(j) means "M
is in state s at time j."

The first problem we are concerned with in this paper is:
When we define the acceptance of finite automata ' with these
first-order formulas, what do we get as the w-languages
accepted thereby? After providing necessary definitions in the
next section, in section 3 we show that the claés of such
w=-languages is precisely the cléss R.

The next problem we are interested in is a hierarchy of the

w-languages based on the complexity of the formulas. We define
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classes of w-languages Eia and Hia

for n > O as the arithmetic
hierarchy in the theory of recursive functions, Dbased on the
alternation of the gquantifiers 3 and v in the defining formulas

in prenex normal form. We show in sections 3 and 4 that Xia =

fa fa fa fa fa fa fa
Ol, nl = 02, 22 = Ou, I[2 = 03, 23 = ZM = e e o = 113 = n}‘i =
.. =R.

From these results it seems reasonable to say that those
(and possibly their Boolean combinations) exhaust the natural
ways of acceptance of w-languages by (deterministic) <finite
automata. In section 5, we remark on a "machine-independent"

version of the first-order description of w-languages.

2. Preliminaries

In the set Z% of all w-words over L we can define a
topology in a natural way, that is the product topology of the
discrete topology on IZ. Let G (F, resp.) be the class of open
sets (closed sets), G' (F', resp.) be the class of denumerable
intersections (unions) of open sets (closed sets), and G" (F",
resp.) be the class of denumerable unions (intersections) of
sets in G' (¥F').

Then 0., ... , 0, are characterized as 0, = & TR, 0,= F

n R, 0 =G' "R, 0, =F' "R, and R is included in " ngpn,

3

The members of R are called W-regular languages. We refer the

reader to [1], [5], [6] for other properties of classes 0,
-+ 5 0y, R.

With each finite automaton M = (S, I, 6, so) we associate

a class of first-order formulas, called M-formulas, in the

following way. Terms are expressions of the forms i + n or n,
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where i 1is a wvariable and n is a natural number. Atomic
M-formulas are expressions of the forms Ps(t), f =t', t < ',
where s is a state of M and t, t' are terms. Finally,
M-formulas are constructed from atomic M-formulas using
propositional connectives v (or), A (and), - (not), ~
(implication), < (equivalence), and quantifiers 3, V. We may
simply say "formulas" instead of M-formulas provided there is
no fear of confusion.

Suppose ¢ is an M-formula, and @ is an W-word over L. We
define the O-interpretation of ¢ as follows: The domain of the
interpretation is the set N = {o, 1, 2, ...} of mnatural
numbers. The terms i + n, n and atomic M-formulas t = t', t <
t' are interpreted as usual. An atomic M-formula Ps(t) is
interpreted as "reading ¢, M is in state s at time t."

For any closed M-formula (i.e., an M-formula without free
variables) ¢, we say ¢ defines the w-language

A(M, ¢) = foe 2% |

¢ is true under the OG-interpretation}.

Finally we define types Zia, Hia (n=0, 1, 2, ...) of

M-formulas. Suppose ¢ is an M-formula of the form

i

g. i . o o LR N i
11190 1,e vi

Vi .
1 12,1%2 2 2,e,

a. 3. e o o i e o o i i * o @ i
1y 031 peer 3y ceeQ 4Q1) ool QL W

3

where e, > 1 (1 < p<n), 1,99 +oe s iy are different

3
variables, Q is V or 3 according as n is even or odd, and V¥ is

an open M-formula (that is, an M-formula which contains no

fa

qﬁantifiers). Then we say ¢ is an M-formula of type Zn . An

M-formula of +type Hia is similarly defined with 3 and Vv

replaced each other. Iﬁ particular, we say open M-formulas are



fa fa
ga; For each n > 0, we denote by I =~ (or T -,

resp.) the class of w-languages of the form A(M, ¢) with

of type Zga and I

fa fa fa
M-formulas ¢ of type I, (or I "), and denote the class ¥

fa fa
Hn by An .

3. Characterization of R

In this section we show that Ww-regular languages are
precisely the W-languages defined by M-formulas, and the class
of them is equal to Zga and ﬂga.

Theorem 1. For any closed M-formula ¢, A(M, ¢) is an eregular
language.

Proof. We first extend the definition of A(M, ¢) to all
M-formulas ¢ . (rather than just for closed M-formulas).

Suppose that ¢(il""' ’ in) is an M-formula that has n
free variables iy, ... , i, (n 2 0). Let T = {0, 1} and let r
be the alphabet I x I'" = {(a, byy eee bn) | a €1, by, el
b, € I'}. Por an w-word o on I and w-words Bls ove Bn on T let
<, B4, ..., B > denote the w-word Y on Fn such that v(m) =
(@(m), Bl(m), cei Bn(m)) (0O < m). Here, if o = 8p8 8, .-
then a(m) denotes a (that is, a(m) denotes the mth symbol of
o) and similarly for B, (m), ... , B (m), v(m).

" A(M, ¢) denotes the w-language
<, om1161, cee, OB > |
aez®, 0<¢m, oo , 0% m o, Bys eee 5 B € v,
¢(m1, «oe mn) is true under the a-interpretation}.
Then we prove the theorem for M-formulas ¢ that are not -

necessarily closed. The proof is by induction on the structure

of . It uses the fact that (1) w-languages of the form LI

-5 -



6

with (usual) regular languages L (C Z*) are in R, and that (2)
R is closed under Boolean Operations and projectioﬁs (that is,
length preserving homomorphisms). We omit tbe details»of the
proof. O
| The converse of theorem 1 is also true.
Theorem 2. Foy any w-regular 1angﬁage A, there exists a closed
M-formula ¢ such that A(M, ¢) = A. , o
Proof. Suppose that A = A(M, ¢). Then we have

A= {ac€ g® | EEEM(G) = F for some F € 3}
A(M’F:;( i vy (j>1i - Q; P(3) ,

A A viak (k2 ja Bg(k)))). O

SeF

We can refine the above result as follows.
Theorem 3. For any A€ R there are finite automata M, M' and

open formulas ¥, ¥' having free variables i; J» k such that

A = A(M, 3i Vi 3k ¥ (i, j, k))
= A(M', vi 3j vk V' (i, j, k)). _
Proof. We will prove only for 3i Vj 3k ¥(i, j, k) because R is

closed under the operation of complement.

Suppose that A = O(Mi, F) with M, = (S z, 8 ). Let

1° » Sp1
n be max{|F|, [Sll},_where | | denotes the cardinality of sets.

We construct another finite automaton_l\'{2 = (Sg, L 52,

qaz). Intuitively, M. simulates Ml’ and at the same time counts

2
the +time with modulo n. Formally, 82 is the set {(s, h) | s €

Sl’ 1 < h < n}, S50 is (SOl, 1), and §_ is defined by ’52((3,

2
h), a) = (él(s, a), h'), where h' = h + 1 if h < n - 1 and h' -
1 if h = n.

For each F € F and s € $ we can construct oper
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M,-formulas Xl,F(i)’ X2,s(j)’ X3,S(k) having the following
intuitive meaning:
Xl,F(i) <> at time i, the second component h of the state
(s, h) of M, is such that h < |9] and P is +the hth
element of 7
X2,s(j) <= at time Jj, the second component h of the state
(s, h) of M, is such that h < lSll and s is the hth
element of S13
x3’S(k) == at time k, s is the first component of the
state (s, h) of M,. |
Then, for each &, we have the following equivalence.
A
= A(my, F:/y(ai vi (j 21 - A P_(3))
A s,/e\r viak (k2 j A Pgi(k))))

= A(M v(aivy (j z1i >V X3 4(3))

27 Fe3J SeF
A AYIIR (k2 A xg ,(K)))
S‘€F Py)
- . Vi . . .
AM,, V31 (Y] (§ 21 >V X35 (3))

P AEYIAE (k2 3 A xg 60 (K)))) |
=AMy, 31 (vj (J 21 = Vo (% g(3) AV X3.5(3)))
Av3ak (k2 Ja

vV (xg p(1) A N (X 51(3) = X3,5:(X))))))

FeF
=AMy, 31 ¥jak ((§ 21 » V(X p(i) he X3,5(3)))
Ak 23§ A

Vo () A A (G 5i(3) = X3 60 (K)))))).
The last M2—formula is of the desired form. O

Corollary 4. For any w-language A the following six conditions-

are equivalent.

(1) A €R.
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(2) A€ a® (02 3).

(3) A€ 1% (nz3).

(4) A €n® (n 2 3).
A

A(M, 3i vj 3k ¢) for a finite automaton M and

(5)

an open M-formula ¥.
- (6) A = A(M, vi 3j vk y) for a finite automaton M and
~an open M-formula V.
"In+ closing this section, wermention a,charaéterization of
R which is a direct consequence of the proof of Theorem 1. .
Corollary 5. The class of w-regular languages -is the closure of
0l (or 02) under Boolean operations and projections..
Compare the corollary with the fact thaﬁ R is the class of

projective images of the sets in 0_, and-also 1is the.. Boolean

3’
closure of 0, (see e.g., [1]).

4. Characterization of 0, 0o, 03, 0y
In this section we characterize 0., 0y, 03, 0, by means of

forms of M-formulas.

Theorem 6. For ény w-language A the following three conditions
are equivalent.
(1) & € 0.
(2) Aex]?.
(3) A = A(M, 3i V) for a finite automaton M aﬁd, an open
M-formula V. .

A similar result holds when 01, Z{a, 3 are replaced by 02,

Hfar, vV, respectively.

Proof. We only prove the part (2) = (1) for 0,. Let 3i, ...
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aip w(il, e ip) be a closed M-formula defining A, where Y
is open. We may assume that ¥ does not contain - because we can
eliminate =+ by ﬂPS(t) == ;fsPs'(t)’ At < ' = g < Vv ot o=
t', "t =1t"'"*=$' <t vi<t.

The proof of Theorem 1 shows that if ¢ is an atomic
M-formula then A(M, ¢) is in @ (that is, open). Hence, for any
numbers My, eeey W, A(M, w(ml, cee mp)) is obtained from
sets in G by finite union and finite intersection. Hence it is
in G. Therefore we have

A

A(M, 31l “ee 31p w(ll, cee 1p))
U A(M, ¢(ml, cee mp))
(S N =
GNR 01
(U ranges over all My, +ev , M

pl- O

Corollary 7. TFor any w-language A in £ the following four

.conditions are equivalent.

(1) A€ 0y, N0 0,.
(2) A€ A{a.
fa fa fa
(3) Ae BT (= Tp* = MR,
A

*
(4) Lz® for a finite subset L of I .

Proof. For the equivalence of (1) and (4), see, e.g., [6]. O

Theorem 8. For any w-language A the following three conditions
are equivalent.
€
(1) A€ 0.
fa
(3) A =A(M, ¥vi 3j V) for a finite automaton M and an

open M-formula V.



G\
- fa - .
A similar result holds when 03, n2 » ¥V, 3 are replaced with

f
0y, Z2a, 3, V respectively.
Proof of (2) = (1) for 0. The proof is the same as that of
(2) = (1) of Theorem 6 except that we use

A = A(M, Vig ... vlp 3, e 3],

TC NPV S FRIRTRNE 1)

N U A(NM, W(ml, ey Dy Mgy oeee nq))
EG'nR=03

(N is over 211 my, ... , m  and Y is over all nq, ... , nq).D

p

Corollary 9. PFor any w-language A the following three

conditions are equivalent.

(1) A€ 03 N 0.
(2) A€ B2,
(3) A= {a€z®| RunM(a) € ¥} for a finite automaton M =

(S, vy §» s ) and a class J of subsets of S.
0]

Proof. The equivalence of (1) and (3) was shown by Staiger and

Wagner ([5]). O

5. Concluding Remarks

In this paper we introduced the>Mfformulas associated with
a finite automaton M, and studied classes of w-languages
accepted in the ways specified by the M-formulas. The result
can be restated in terms of "machine-independent" first-order
description of w-languages.

For a given sequence L = (L;, Ly, ... , L;) of regular
languages (S Z*, m> 1), let us define L—formﬁlas as the

first—-order formulas which are constructed from the atomic

- 10 -



formulas of the forms of[t] € Ib

where t+ and t' are either i + n or n for a variable 1 and a

(1 <p<m), t=t', and t < t°

natural number n. In other words, L-formulas are same as the
M-formulas except that atomic formulas Pg(t) (s € 8) are now
replaced by o[t] € L, (1 < p < m). For a given w-word & over I,
we define the a-interpretation in the same way as for
M-formulas except that the meaning of o[t] € L is "the prefix
of o of length t is in L."
For a closed L-formula ¢ we define
AL, ¢) = {o 2% |
o is true under the a-interpretation}.
Lastly we define the types Ziegand Hieg(n > 0) of L-formulas in
prenex normal form as in the case of Zia and Hga (except that
"M-formulas" are now replaced by "L-formulas"). Under these
definitions we can easily see the followings.
(1) Por a given finite automaton M and a closed M-formula ¢ of

fa fa
type I (or Hna), there exists a sequence L = (Ll, Loy «ee s

Qn) of regular languages and an L-formula ¢' of +type Zieg (or
n;'e% such that A(M, 9) = A(L, ¢').
(2) Conversely for a given sequence L = (L1’ Lg, cee Lm) of

regular languages and a closed L-formula ¢ of type deg(or ngg)
one can construct a finite automaton M and an M-formula ¢' of
type Zga (or Hia) such that A(L, ¢) = A(M, ¢').

Therefore we can get characterizations of R and its
subclasses O M 05, 0y, 0o, 03 N0y, 03, 0, by means of
L-formulas of the types Z;egand Hiegexactly as before. This can
be seen as‘ a genefalization of the characterization (or

definition) of 0 - 0y stated in terms of regular languages;
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[2]

[3]

[4]

[5]

[6]

A€ 0, = A ={a€z” |31 (a[1] € 1)I,

A€ 0, == A={a€:” | vi(afi] € 1)}, -

Ae 0 <> A= {ac 2P | viaj (i < ja alj]l€ 1)},
Ae 0, <= A={ac€ 2P ] 3ivy (4 < j»a[j]l € L)},
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