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Some results in the divisor problems

S. Kanemitsu, Kyushu Univ., Fukuoka

In what follows, € denotes any positive number and c, with
or without suffix, denotes a positive absolute constant.

§1. Introduction and historical survey. : .

Let Bk(x) denote the k-th Bernoulli polynomial, [xl the
integral part of x, {x}:=x-[x] +the fractional part of x,
Pk(x):==Bk({x}) the k-th periodic Bernoulli polynomial, Gr(n)::

% ar the sum of r-th powers of divisors of n, and define the
din :

basic functions G, k(x) by

’

for real a and k€& N. It was observed by Landau [28] as early
as 1920 that the asymptotic relation

(1.1) a(x) = =264 4(x) + 0(1)

had been implicit in Dirichlet's work on the divisor problem,

where the error term A(x) is defined by

Y d(n) = xlogx + (2y-1)x + A(x),
n<x

d(n) =o,(n) and Y=0,5772... being the Buler (- Mascheroni)
constant. By (1.1), the Dirichlet divisor problem, viz. the
problem of establishing the estimate o '

(1.2) a(x) = ofx'/ 4]
is equivalent to that of obtaining the estimate
(1.3) o 6, . (x) = ofx'/4%e

0,1

-1-
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The best estimate of A(x) known to date is due to Kolesnik

[261:
(1.4) A(x) = O(x35/108+€],

while the best known Q+(resp.'9_)-result'for A(x) is due
to Hafner [14] (resp. to Corrddi and Katai [11]):

(1.5) A(X) :Q+{(X 10g X)1/4(log ]_og X)<3+210g2)/49Xp(-0W)§}
(1.51) 8(x) =2 {x"/ bexp(c(log log )/ 4(1og Log 1og x) ™3/ 4)} ,

and the Q+-resu1t of Hafner is again obtained in [16] as a con-
sequence of a general omega theorem.

As a generalization of (1.3), Chowla and Walum [9] conjectured
that S

(1.6) G o (x) = o[xa/2+1/4+€]

&,k L

and proved the special case a=1, k=2 without e-factbr:v
(1.7) G, o(x) = ofx3/4J.
1,2 1

This is rather an astonishing result, as is seen from the following
interpretation of Nowak [34]: If on could estimate the discrepancy
DM(w) mod 1 of the sequence w= (N/n), n=1,..., M:=|/N| by

(1.8) Dy (w) = o[N“1/4+€J,

then (1.3) would follow immediately from Koksma's inequality (cf.
Hlawka [17], p. 107). Assuming the validity of (1.8) for every
integer M<v/N, one could easily infer (1.7).

Another special case a=0, k=2 of (1.6), which is much
harder than (1.7), was again stated by Chowla [10]. Since (1.7)
was proved, several attempts have been made in the case k> 2:
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(Orxa/zﬂ/ﬂ ir a > _12_ ’
3
(1.9) o () =4 0[xProgx| iz as ],
'LO X(4a+3)/10] if 0 < g < % s
k J -

the last estimate being improved as
(1.10) 6., (x) = 0[x*T10g x if 0<ac<4
* a,k g > PR

where (1.9) is due to Kanemitsu and Sita Rama Chandra Rao [22],
and generalizes Walfisz's estimate [52], [53] of Gg 2(x) to

the case Of_a<-%, which improved upon the previous results of

Wigert [54], Landau [27], Ramanujan [41] and Landau [29], and
where (1.10) is due to Nowak [35], and generalizes Peng's estimate
[40] of GO’Z(X) (MacLeod [32],[33] mistakingly attributes [40]
to Buch¥tab).

It should be noted that the papers by MacLeod [32],[33] and
Suryanarayana [50], which are relevant to conjecture (1.6),
contain errors due to a fallacious estimate given by Segal [44],
which, however, Segal [45] himself pointed out to be false:

Defining E (x) by ] 0(n)==£é§Q-x2+-E1Kx) (o(n) =0,(n)),

n<x
we find that
(1.11) z E <n)=l(;(2>-1>x2+—7——x5/4' 7 ﬁ—o(m;sin(w/ﬁ?—ﬂ)+O(Xlogx)
n<x L 4 23 27T2n:1 n7 4 4

in [44], and that the second term is bounded above by O[x5/4},
which is not the case because the series is not absolutely con-

vergent, and (1.11) gives the fallacious estimate used both in

[32],[33] and [50]:

XGO’Z(X) + Gg,g(x> = O(X5/4].

From the other direction, i.e. regarding Q-results, the

following has been established or just stated (cf. Kanemitsu and
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Sita Rama Chandra Rao [23], [24]):

' . , 1
Q+[Xa/2+1/4 logx)‘]/z*_a/ﬂ if 0<a<sz
(1.12) G ,(x) = | |
a2 ( a/2+1/4 (log 1og:x)1/4'a/2
2 1x exp 3772/ 3
-t L (log log log x)
if 0<a<z ,
(1.13) lin inf x" /ey L(x) = -=,
x>0 ’
(1.14) G1/2,2(x) = Q+(X1/2log)<) ,
and ) : v ; ‘
(1.15) Ga,Z(X) = Qi(xa'/2+1/4) if 1§<a<% a#l.

Among these, (1.15) follows from a theorem of Chandrasekharan’
and Narasimhan [7} together with our Theorem 1 below, and, com-

bined with (1.9), it provides a complete solution of conjecture

(1.6) in the case k=2, §<a<2 , a#1. The Q,-results in (1.12)
and (1.14) are consequences of general theoremsof Hafner [16],
which also give Q,-results for - Ga’2(x) when \-%< a <0, when
combined with Theorem 1. ,

In this note we present, without proof, some general omega
-theorems which yield, as a simple corollary, $_-result in (1.12)
and @, -results for G, 5 s(x) when -2<ac< —; .

Speaklng rather dogmatlcally, I dare say that in analytlc
number theory there are two very different kinds of arithmetic
functions, the difference arising from whether the generating
Dirichlet series (if any) satisfy the functional equation with
A>0 or not (for details, see §2 below). When the generating
Dirichlet series satisfy the functional equation with A >0,
there are two different but not mutually independent ways of
obtaining omega-theorems. The one starts from Ingham [18] and

has been developed in Corrddi and Kdtai [11], Gangadharan [13],
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Joris [19],[20], Redmond [43], which give, in general, estimates -

of type (1.15'), and to which our main theorems belong also;

the other has been developed in the works of Szega, Berndt {41,

[5],[6], Steinig [49], Hafner [16] (see this paper for more

details). The general reference is Chandrasekharan and Narasimhan

[7]. ‘ ’
Now we refer to conjecture (1. 6) on average. The following

average results have been obtained:

X
(1.16) %L Ga,2<t)2dt = O(Xa+1/2] if lal <%

(Kanemitsu and Sita Rama Chandra Rao [23]), and this has been
extended to the more general setting by Balakrishnan and Srini-

vasan [2] and Srinivasan [45] whose theorems provide, in particu-

lar, .
X +1/
(1.16') L | @ (t)zdt=Qfxa”/2] if  a>-+ and k>2
X a,k L 2 -
(X
We hope, however, to get an asymptotic formula for I Qa;k(tizdt

;
x

similar to that obtained by Cramér [12] for I A%(t) dt, and
1

hope to accomplish this through the error function R(x,r) which
is closely related to G, k(x). Cf. also Bellman [3; 12.5],
Chandrasekharan and Narasimhan [8] and Redmond-[AZl.

§2. Statement of results
2.17. To state Theorem 1 let us first introduce some further

notation. For Db>0, p>0 let

Pp(x’r’b):::TTEerT nz; (xb__nb)pOr(n)-Sp((ﬂx)b,r,b) ’

R(X,I’): = PI(X,I"I") ’

where the prime on the summation sign means that if p=0 and

n=x, the term O-r(n) must be halved, and
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r(s)nr™% (bs)c(bstr) sto -
T(s+p+171) ’

Sp(xyr,b): :2 Res
£ s=¢

where & runs through all the poles of the function described
above in the half-plane Re&>-p~1-k, and k 1is such that

-r+1/2
k> 5 |
so that, for r#0, *1,
_ r T T T r+1
R(x,r)—-nzx(x -n )o__(n) - L]_ =t (1-r)x+q37c(1+r)x
- Jolr) g(—r)]
2 2 ’
p) 1 1 ' 1)
R(x,1) =nZX(x—. n)0_1(n) - [Q%lxz -5 X 1ogx+§(‘l -y-log 27T)-X-‘2—ZJ,
and /
R(x,0) = ) (log%)d(n) - [x log x - 2(y - ‘I)x+1—10gx+1—\log 27[].
n<x n 4 R )
(Since, if r< 0, we have R(x,r)=-xR(x,~-r), ~r>0, we may

restrict ourselves to the case r>0).
Now we may state
Theorem 1. Let —-;—g_r<3,r¥0,1.Then

R = -5 a 00+ x4

As= simple consequence of (1.9), (1.10) and Theorem 1, we have

Corollary 1.

( : '
O[x(2T‘1-)/4] if 0<r<t
L 2
R(x,r) =4 0(1log x) ‘ if ~1~=%
O'[X(7r-5)/7long if %<r£,‘] .

Ihcidentally, the first two improve upon the so far known best



estimates due to Wilson [55], and the third improves upon fhe
result of Landau [29]. Chowla's conjecture (1.2) is equivalent
t0 the estimation R(x,1)==0(x1/4+8) (cf. also §2.3).

| 2.2. Before stating our main theorems let us introduce the
definition of a general functional equation, essentially due to
(Bochner and) Chandrasekharan and Narasimhan [7]:

Let {an}, {bn} be two sequences of complex numbers not all

the terms of which are zero. Let {An}, {un} be strictly in-

creasing sequences of positive numbers. Let

N

Alg): = T_£ F(avs + Bv)’

<1

where NeN, Bv are arbitrary complex numbers, o, >0, and

A:= ) av3>% . Suppose that

each of which converges in some half-plane with finite abscissa
of absolute convergence Og and G% , respectively. Then ¢(s)
and ¥(s) are said to satisfy the functional equation (&eR)

¢(s)a(s) = v(6-8)A(8-5)
. . . . ;g . . .
if there exists in the s-plane a domain ,» which is the exterior

of a compact set )X, in which there exists a holomorphic function X
with the property '

lim x(o+it) = 0,
ltl+oo

uniformly in any finite interval -o<0,<0<0,<*, and

X(S) = ¢(s) A(s) for g>gg
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x(s) = v(8~-8)A(S~8) for o> of

For ©02>0 we form the Riesz sum of an of order p:°
P(x): = : Z (x - 2 )Pa "—l; ere rs)o(s) xs+pvds
ST A I DI n) PnTFI ) . T(sfotl) ,
< .

where ¢ >0, c >GZ, and define the residual function

_ 4 T ¥
s7(x)t = J rréi)ﬁ(f%) x70 as

-

where .éz is the rectangle with vertices at c, - iR, c, +1iR,

c, +iR, ¢, - iR. Here ¢, >0, ¢, >0§; R is so large. that the.

integrand is regular for [|t|>R; c, =a(m04f%);435n%*€z;> TN
m, 1s chosen so large that é; encloses all the singularities
of the integrand to the right of o0=-p-1-k, where k 1is such
that k> |6/2-1/4A], and all the singularities of ¢(s): lie-
in o>-k (so that if o is integral then the integral?is
simply J&}s(s-%gif..(s~rp)
singularities of ¢ (s) and the poles 0, -T,..., -p of T).

ds , and CZ‘ encloges all the

Suppose the following inequalities hold:

_ § 8 .
1 1 v
[6 + 5 t mg > 036, S+ 5 t m, > Re[——&:] »
(B -
£t e n o mod 25 bon e e
L V

Then we consider the error term Pp(x) defined by

PP (x): = Ap(i) - sP(x) = 1 J FEéS)g(S%) S0 4s

where 8;1 is a broken line made up of ¢



¢, +ikR, ¢, + iR, c, tiw,

Theorem 2. Suppose that for any x>1, the set {un:ix}
contains a subset Q==qu={un <x | k=1,..., N(x)} such that
k

1/2A
Ll1'1

no number is expressible as a linear combination of the

/28 L itn coefficients *1, unless u1/2A=un1/2A

k n r
ul/2A has no other representation,

numbers un

for some 7r, in which case
and that

_AS+p+1/2
Pry

(2.2.1) 2<X' Re b ]u > ¢,L(x),

uo< k! Pk
Oy

for all x>1, where L(x) is an increasing, slowly varying
function (for the details of the theory of slowly varying fun-
ctions, see Seneta [46]).

Let

Mo =0, Uy Hyseees Ty =0, 21,
Supposé there exists an %EISX such that n<1. Then
W(x): = inf S_ = min §
n\x)s: = 1n X—mln X.

Suppose there exist constants c¢,, ¢, >0 such that

. X
c,x < q(x) < exp(c5 log:x}’

where

q(x): = -1ogfr\f(x) (>0).

Suppose that

N(x) < exp[Bg 102 X} , B, >0,
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R X
o[exp exp[c m}] ’

=
o
»
jus
)
1]

Q
1}

s:= max {c,, 2B;} > 0

Q(X)”?XP[%‘EEE—?}'

and thaﬁ there exists an n such that
(2.2.2) Re bn £ 0.

Then there exists ¢, such that

Re P°(x) = Qi[xé/2-1/4A+(1-1/2A)p L(c,; log logx * log 1ohg‘ lbg X)] .

“If in (2.2.71) and'(g;Q.Z)‘we have Im in placémof Re, .then"
in the conclusion, we should have Im P°(x) in place of
Re P°(x).

Theorem 3. Under the suppositions Of'ThéorémMZ,:Iét %ﬁn:usAlnb,
A, >0, b>0, %%EZN. Take Q as follows: Q=Q,= {qbl qefQ'},

where Q‘ErQéz {square-free integers with prime factors in P},
where P::PX is the set of prime numbers for which there exist

constants B,;, B, >0 such that

BiTor i S L 1<Bgo% >
log x pGPX

and take L(x) as

A
L(x)s = exp [cu-jzi?;—] R 0 < A< 1.

Thern there exists ¢,, such that

Re PP (x) = @ exp

i+

(X5/2_1/4A+(1_’1/2A)p ( (log log‘X)A ”
L \

Cis -
(log log log x )1 A

-10-



If in (2.2.1) and (2.2.2) we have Im in place of Re, so should

do we in the conclusion. '
Corollary 1., If, in addition to the conditions of the

theorem, we suppose that Re b =Re b(n) is a multiplicative

function of n satisfying the inequality
|Re b(p)| 2 cnopa

for all pe:PX and some a such that

§ ., 1,0 _1
a>5t gt - v
then there exists c,s such that
{ g-;L+(1-J—)D 1+b(a-6/2-1/4A-p/2A)" :
Re PP (x) = @ - 4h =A exp[c (loglog x) ] .
- t[ | (logloglog X)b(5/2+1/4A+p/2A -a)

- Here the same proviso as that of Theorem 3 holds also.
~ Corollary 2. Under the notation of §2.1, if

' . 1 1 r r+2 r+p-1/2 4
r>0, p<r+ 5 s Mg + ) > max [b y T T ] ’
then we have
L lie-Do (1/2+r-p)/2 4|
0 N 24 2 (loglog x)
PP (x,r,b) =0, |x © exp|c, (CFT375T0)TT |
- (logloglogx)

where, more explicitly than in §2.1,

T
Pp(x,r,b) = *Tgfrqj- X (x° - n®)P o_.(n) - { g
L {

1y 1+b "
c(T+2)T()x " Mo (0 () g (r = bn) i (p-1)

br(l+p+1) ‘ n=0 ‘ B v )

b

-11-
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Incorporating the results deducible from the theorems of
Berndt [4], Chandrasekharan and Narasimhan [71, Hafner [16],
Steinig [49] and ours, we now state

Corollary 3. There exist <c¢;, c;y3 such that

[ r/2-1/4 (1og log X)r/2-1/4
Q,{x exp (017 (1og 1og log X)5/2-1'/2 }JL
R(x,r) =< . (Corollary 2) , rz%
L O(xr/2) (trivial) |

fQi [X(log X)r/2-1/4] (Berndﬁ, Hafner, Steinig)
R(x,r) =< o o

0(x*/?) (trivial) 1 <r<%
( o) ((x log X)r/2-1/4] (Berndt, Hvéfné"r:, Stelnlg)

r/2-1/4

R(x,r) =K 9 ><r/2'1/4 exp[c (Log log x) , (Corollary -
+{ v (log log log x)>/2-r/2 )
Q(X§7I:—5'M7’-1og x}‘ (Nowak) —12—<r_<_1
Q@ (log log x) (Hafner)
1y |
R(st) =~
l 0(log x)
J’Q [Xr/2-1/4}
+ .
R(x,r) =< ' (Chandrasekharan and Narasimhan)
l O[Xr/2f1/4] [rl<:%v.

-12=
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2.3. Once one notices that the function C(bS)C(bS'Fr)ﬂ_bS
satisfies the functional equation, one could obtain a series
representation for Pp(x,r,b) appealing to a theorem of Hafner
[15]; in particular, a series representation for R(x,r) would
follow, whichzbthen, yields a series representation for G1-r,2(x)
in view of Theorem 1. However, our original proof in [23] of
the series representation for G1_r’2(x) is not only elementary
and self-contained but can be used e.g. in the investigation of
the logarithmic Riesz sum of dr(n); which is relevant to Chowla'sg
and Walum's conjecture, as will be seen below.

We write

L.(x): = nzx o.(n) logiS =¥ (x) + H (x),

and consider the error term Hr(X)’ where Wr(x) is the sum of

the residues of the function xs;(s);(s--r)/s2 at the points
s=0, v+1, 1. B

Proposition 1. We have

L_1(x) = %% X - %Jﬁgzx - alogx + b - ngO’Z(X) + 0(x 3/4),

A : "
where a = 2(y+log2m), b = -Llogam - 2 + 5—%91, and A,

is one of generalized Euler constants defined by

_ 1 |
t(s) = ghg by £ A (5-1) s,

so that Chowla's conjecture is equivalent to the estimation

H_y (x) =0(x2/44¢)

X
Since H_T(x)=zx_7R(x,1) + J R(y,1)y-2dy + 0(1), one should
1

refer to 82.1 for the known upper estimates of H_1(X>.

-13-
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Corollary 1. We have

X-3/4
H_1(x) = 5375;5 fo(Aﬂ/z) + 0

X'B/é),
H 1(X) = Q_(X—B/A(log x)”4 ,
lim sup XB/AH_1(X) = +¥;

x>0

Proposition 2. We have

[ R(y,1) ' 1, m2
dy = b + a - = + —
), vz Y 2 72’
(° G o(y) © (o P (u)
"Q"—gz—dy='§' ) ——du,
A y n=1 ‘n U
o G (y) -] © P(u)
CICIM B o AU
/1 y n=1 ’n u

Theorem 5. We have

L,(x) = xlogx + 2(y-1)x + -}Zlogx + %—log2ﬂ

_ G1’2(X) _ P, (Vx) + 8P3(/32)

X /Sc- + O(X—B/A) .

This should be compared with the results of Oppenheim | 37]
and MacLeod |33

Proposition 3. We have the identities

Xpa, (8)
L —ng—dt=1§10g2n+y—%,
wh = - 1 .2 ! 3y,2 Z_},
ere A, (x)= } (x=mn)d(n) - 5 x*log x 1+ (v —4)x ek
n<x . Y

-14-
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© Gy (1) © e P (u)
;(3):1-80H'—“—2——dt-1§ | E‘*—<qu——du};'

L n=1 ‘n v

© p (V/T) +8P_(Vt e - B w _B E
J 1 0) 18P (78) e - s J P =By gy s [ R 2By du}.

When O # Lr|< 1, we can obtain a similar asymptotic formula
for Lr(X)'

§3. Possible further developements.

In MacLeod |32,33]| various asymptotic formulas can be found,
e.g. defining EZ (x) (0<t<a) by

Y oln) _ z(2)x + 1 log x a=t=1,
n<x n | 2
a ——
E_t(x) = .
o (n ‘
at -3 _l o ;(a+1)xa_t+1 otherwise,
| n<x ‘

Theorem 8, (iv) asserts that

X ' .
L - -1 - (x) — L )
L E_y(w)du = = 5(Qog 21+ y)x = 520G, ,(x) = 5Gy (x) + 0(1),

which can be simplified, on using (1.9)(of which he was unaware),

(3.1) LX E;|1(u)du = - Jé-(log 2ﬂ+‘Y)X — %GO,Z(X) + O(XT/A) ;

on the other hand, Theorem 4, (b) gives

jf E11(u)du ) (X-—n)o(n) - jf (C(2)u-—%]xm;u du/

: n
n<x

(3.2) Y (x-n)G(n) - C(22) x2 ¥ %(x logx-x)’+ 0(1)

n
n<x

15—
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:—%ﬁbg2ﬂ+ybc+R(L1)+(x1L

so that in studying the error term of f E11(u)du,we may use the

By .
method of trigonometrical sums to estimate GO 2(X) ~ from above,
’
and general omega theorems in §2.2 to estimate R(x,1) from
below. A similar situation reveals itself also in the study of
X 2 1 1 1ol ~1/4
[ E (u)du=——c(2)x+-:|—logx+(} 2(x)+ Al+—y+—2-<;(3))+0(x )

by P2 2 2 £ 7

= 1 (x-m)o_,(n) = 3u(3x* + 35(3).
nix '

: , X ' :
" Thus the estimation of the error term for J E22(u)du reduces,
\ 4 4 - ,

on the one hand, to that of G_|, 2(X) (=0(log x)) from above;,

and, on the other hand, to that of |} (xg-n)d_z(n) - ‘%§(3fX2
, s . . 12

L )] from below. Actually, the key

1 a
- §§(2)x + log x + (A, + 5 Y

12

hindges on Lemma 20 in [33], which gives,]with_the aid of_&j,?),an

asymptotic relation between TGa 2(x) and the,efror term_of\the
Riesz sum of order 1 of some_divisor functions of the form

Ga(n)n—t. Once one notices this relation and applies the upper
estimation for G and lower estimation for R obtainable from

general omega theorems, one easily gets a precise asymptotic

| (X . | SR
formula for J E?t(u)du4 which, in general, readily yields an
; . :

asymptotic formula for ) E?t(n). It seems to me that MacLeod's
: . . o n<x :

theorems 6-12 should be examined in the above mentioned way.

Moreover, MacLeod treats only those sums of the form ) Ga(n)n_t
' n<x

with a, teZ, but we need to consider them with a, t eR to

investigate G_ ,(x) for O<aeR.
a,k -

-16-
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Nowak. [34] considers an analogue to the function Ga %ﬁx),in

the circle problem, i.e.the function H_ kﬁxﬁ =) (Vx-nz)aPkb/X—nz>,
ngv'x/2

and provides a precise series representation for H1 2(x).
. b

Considering that the divisor problem and the circle problem have
been discussed in rather a parallel way, it seems plausible that

the consideration of Ha K for various a, k might cut open
s

a new phase in the circle problem, and at least it does not seem

absurd to expect that the sum ) r(n)log(x/n) appearing in
n<x

[1] could be treated by a method similar to that used in the

proof of results in 82.3, using Nowak's estimate of Ha k*

In [36] Nowak obtains another interesting analogue to Chowla's
and Walum's conjecture (1.6) in the case of the Piltz divisor
!problem in three dimension, and sets forth a conjecture relating

- to the n-dimensional case (n>4). In the three-dimensional, the

~analogous function to Ga,kﬂx) above is Ga,b;kﬁxh = ) nm P (==
where D(x) stands for the domain %<13§q3/3, n<rn§(x/n)1/2,

and his Theorem estimates G, b'k(x) very precisely in the case
s Vs

k>2, 2a-1>b>1., The investigation of this function as well as
the function H k(x) may enrich the theory. '
Smith [47] considers the seemingly relevant sum ) (x-n)(ngn)?

) n<x
to ours, but this seems to belong to another field.

‘Finally, we note that the most difficult case of (1.6) for
k=1 has not been studied enough, the obtained estimate [21] is
still very weak. It should be possible to obtain as good an

estimate as (1.4).
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