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Actions of symplectic groups on a product of projective spaces
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0. Introduction

In previous papers [61,[7], smooth actions of special
unitary (resp. symplectic) groups on a product of complex
(resp. quarternion) projective spaces have been studied. Here
we shall study smooth actions of symplectic group Sp(n) on

certain product manifolds and we shall prove the following.

Theorem. Let X ©be a closed orientable manifold on
which Sp(n) acts smoothly and non-trivially. Suppose n = 7.

(i) Suppose X A/Pa(C) x Pb(C), 1 =b <a< 2n and a+tb<
4n-3. Then a = 2n-1 and X 1s equivariantly diffeomorphic
to P2n—1(c) x Y, where Y, is a closed orientable manifold
such that YOzN/Pb(C) and Sp(n) acts naturally on P2n_1(0)
and trivially on YO.

(ii) Suppose X ﬂJPa(H) x Pb(C), 1 £ a g_n-f, 1< b= 2n-1,
and R2a+b £ 4n-4. Then there are three cases :

(a) a =n-1 and X 1is equivariantly diffeomorphic to
P

(H) x Y1, where Y, is a closed orientable manifold such

n-1
that Y1«msz(C) and Sp(n) acts naturally on Pn—1(H) and
trivially on Y1,

(b) b = 2n-1 and X is equivariantly diffeomorphic to
P2n_1(C) X YZ’ where Y2 is a closed orientable manifold such

that Y, A/Pa(H) and Sp(n) acts naturally on P2n_1(C) and



trivially on Y2,
(c) b =2n-1 and X is equivariantly diffeomorphic to

(S4n—1 X Y3)/SP<1)’ where Y3 is a closed orientable Sp(1)

2

manifold such that Y3 n~ ST ox Pa(H), Sp(1) acts as right

SAn—T

scalar multiplication on » the unit sphere of Hn, and

Sp(n) acts naturally on 784n-1

0

and trivially on YB' In

addition,  F v S
“(

X Pa(C) and the induced homomorphism
i% : H(Y,) > H°(F) is trivial, where F denotes the fixed
point set of the restricted U(1) action on YB' Cbnversely,
if ¥, satisfies the above conditions, then (S*"7' x ¥,)/sp(1)

~ P, 4(C) x P (H) for 1z=a<n-2.

Throughout this paper, let H¥*( ) denote the singular
cohomology theory with rational coefficients. By Xy~ X,
we mean H*(X1)§; H*(XZ) as graded algebras. Denote by Pn(C)
and Pn(H) the complex and guarternion projective n-spaces,

respectively.

7. Preliminary results
First we prepare the following two lemmas which are proved

by a standard method (cf. [2]?[33,[51).

Lemma 1.1. Suppose n 2 7. Let G  be a closed connected
proper subgroup of Sp(n) such that dim Sp(n)/G < 8n. Then
G coincides with Sp(n-i) x K (i = 1,2,3) up to an inner
automorphism of Sp(n), where K is a closed connected

subgroup of Sp(i).
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Lemma 1.2. Suppose r =z 5 and k < 8r. Then an orthogonal
non-trivial representation of Sp(r) of degree k 1is equivalent
to (ﬂ})R € ﬁk_Ar. Here ();)R : Sp(r) = 0(4r) is the canonical

inclusion, and Bt is the trivial representation of degree 1.

In the following, let X be a closed connected orientable
manifold with a non-trivial smooth Sp(n) action, and suppose

n =27 and dim X < 8n. Put

Py {x eX : sp(n-1) < Sp(n) < Sp(n-1) x sp(1) §,

K1)

Sp(n)F(i) = {gx : g ¢ Sp(n), x & F(i>§.

Here Sp(n)X denotes the isotropy group at x. Then, by Lemma
1.1, we obtain X = X(O)\J X(1)kj X(Z) p’X(B). Moreover, from
Lemma 1.2, we can show the following Propositions. The proofs
are omitted. |

Proposition 1.3. If X(k) is non-empty, then X(i) is

empty for each 1 = k+2.

Proposition 1.4. Suppose X = X(k>\J X(k+1)‘ If X(k)
and X(k+1) are non-empty, then the codimension of each

connected component of F(k) in X is equal to 4(k+1)(n-k).

Corollary 1.5. Suppose X = X(Z) L’X(B). Then either X(2)

or X(3) is empty.

Remark. dim Sp(n)/Sp(n-k)xSp(k) = 4k(n-k) and
ﬂXSp(n)/Sp(n-k)xSp(k)) = ,Cy» where A( ) denotes the Euler

characteristic, and an denotes the binomial coefficient.
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Remark. If dim X < 4n, then we see X = X(1). In addition,

if HOdd(X) = 0, then X is equivariantly diffeomorphic to

P__,(H), P__ (H) x 8% or

Pzn_1(C), where Sp(n) acts naturally
on Pn—1(H>’ sz_1(C) and trivially on 82. So we assume

dim X Z 4n, in the following sections.

2. Cohomological aspects
Throughout this section, suppose that X 1is a closed orientable
manifold with a non-trivial smooth Sp(n) action, n =7

and X = X(O) U X(1).

Proposition 2.1. Suppose either X ﬂ/Pa(C) X Pb(C),

1

b £a <2n € atb < 4n-3, or X NPa(H) X Pb(C), 1 =a =n-1,

I

1 «b 2n-1, 2n € 2a+b =< 4n-4. Then X(O) is empty.

(Proof) Suppose that Xegy 1s non-empty. Let U Dbe an
invariant closed tubular neighbourhood of X(O) in X, and put
E =X - int U. Let i : E - X be the inclusion. Then
Y

i% s Ht(X)-éII E) is an isomorphism for each t = 4n-2,

because the codimension of each connected component of X(O) is
4n by Lemma 1.2. Put Y = E f\F(1). Then Y 4is a connected
compact orientable‘manifold with non-empty boundary 3Y, and
Sp(1) acts naturally on Y. There is a natural diffeomorphism
E = (84n_1 x Y)/Sp(1). By the Gysin sequence of the principal

Sp(1) bundle p : SAn—1 x Y > E, we obtain an exact sequence

0 » XT840 ¢ v) s PEh(r) 5 %K(E) - 5 (s4T x1) > 0,

2k<

where 2k = dim Y = dim X - (4n-4). Hence we obtain rank H Y)
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- rank H2k'1(

Y) Z 1, by the cohomology ring strucure of X.
Considering the homology exact sequence of the pair (Y,3V)

and the Poincare-Lefschetz duality, we obtain
renk Hy(87) & rank Hy(Y) + rank H°'(Y) - rank H°X(1) 20.

Therefore 3Y 1is empty; this is a contradiction. q.e.d.

In the remaing of this section, we assume X = X(1) =

(San’1 X F(1))/Sp(1), where F<1) is a closed connected
orientable manifold with a natural Sp(1) action.

Here we describe certain situations which appear in the proofs
of the following Propositions. Let
odd(

Y Dbe a closed orientable Sp(1)

manifold such that H Y) = 0. Put M = g4n=T 4 Y, where Sp(1)
acts as right scalar multiplication on 8471, Let T be a
closed toral subgroup of Sp(1). Consider the following

commutative diagram

M/T _Ij;M/SP“)

(D-1) Ln; LTL;.

Pon-1(0) ’E’Pn-NH)

where [, , 7{, are projections of fibre bundles with Y as the
fibre, and pis a4 are projections of 2-sphere bundles. Since

odd (

H Y) = 0, we can apply the Leray-Hirsh theorem to the

fibrations 7, 7. In particular, we see HOdd(M/Sp(1)) = 0.
By the Gysin sequence of the principal Sp(1) bundle p : M -
M/Sp(1), we obtain an exact sequence

L
~

(4,0 0 =100 5 88 0ysp(1)) S E2 ep(1)) S E2 00 > 0
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for each i, where 4 is the multiplication by e(p), the
Fuler class.
) . . - 4N-1 .
We regard S as the inductive 1limit of S on which
T acts naturally. Let F denote the fixed point set of the
restricted T action on Y. Consider the following commutative

diagram :

L

jv\
B (8™ x ¥)/T) ——— HT(M/T)
(p-2) La L
‘ ¥
HY((8%/T) x F) —> #'(P, ,(C) x F),

where i,, i,, j, jp are natural inclusions. Since HOdd(Y)
= 0, we see that (cf. [/J)

(1) i%¥ is injective, j* 1is surjective and 1%

X is
surjective for r > dim Y.

On the other hand, j% is an isomorphism for r < 4n-2,
and hence

(2) i% is injective for r < /n-2.

Also we prepare the following for later use. The proof is

omitted.

Lemma 2.2. Let S be a closed connected smooth Sp(1)
manifold. Let F be the fixed point set of the restricted T
action on S, where T is a closed toral subgroup of Sp(1).
Suppose that codim F = 2 and F 1is not connected. Then there

is an equivariént diffemorphism : S = Sp(1)/T x F,, where F

1° 1
is a connected component of F.



2-A. Now we consider the case X A/Pa(H) X Pb(C).

Proposition 2.3. Suppose X AfPa(H) x Pb(G), 1< a<n-1,
1 b < 2n-1, 2n =2a+b =« 4n-4. Then either a = n-1 and

2

F<1) ~P, (C), or b = 2n-1 and F<1) ~ S5 x Pa(H).

b

(Proof) The cohomology ring is as follows.
H*(X) = QEU,V]/(Ua+1,Vb+1) ; deg u = 4, deg v = 2,

We can express e(p) = &u + ﬁvz; Ar» B &Q, where p : sén-1 4 F(1)
- X is the principal Sp(1) bundle. By definition, the Sp(1)
bundle p is a pull-back of the canonical principal Sp(1)

bundle over Pn-1(H)’ and hence e(p)™ = 0. Thus we obtain

av2n-2a

<Xﬁ = 0, by considering the term u in the expression

of e(p)®. On the other hand, we can prove e(p) # 0 by
making use of the exact sequence (Ai). Moreover we see, from
(Ai), that if B3 = 0 then a = n-1 and F(

]
X =0 then b =2n-1 and F ~ S P_(H). q.e.d.

) /vPb(C); if

Now we consider the Sp(1) action on Ly Let T be

1).‘
a toral subgroup of Sp(1). Denote by F the fixed point set

of the restricted T action on F<1). Since ;k(F(1)) £ 0,

we see that F 1is non-empty. We shall show the following.

Proposition 2.4. If a = n-1 and F(1) ﬂ/Pb(C), then the

Sp(1) action on F(1) is trivial. If Db = 2n-1 and F(1) ~

0

s? x Pa(H), then F ~ S~ x Pa(H) or F~ 3

2(

0 X Pa(C). Moreover
2(F) is trivial.

the induced homomorphism 1% : H(F ) > H
(1)
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(Proof) Put Y = F(1) in the diagram (D-1). Let t €

HZ(P (C)) and w & HA(P (H)) Dbe the canonical generators.

2n-1 n-1
Then 7[§(w) = e(p) by definition. We see that e(p) =odu, X# 0
or e(p) # ﬂvz, B # 0 in Proposition 2.3.

L (C).

n_1(0) X Pb(C), b €2n-2 Dby making use of

Suppose first e(p) =@u. Then a = n-1 and F(q)/ﬂ/P
We can prove M/T v P,
the Leray-Hirsch theorem, and hence the T action on F(1) ~
Pb(C) is trivial (ef. L&1, Proposition 3.3). Therefore the Sp(1)
action on F(1) is trivial. |

Suppose next e(p) =/3v2. Then b = 2n-1 and F(q) ~
s? x Pa(H)' Put u, = p%(u), v, = p?(v) and b, ='E¥(t). We
can apply the Leray-Hirsch theorem to the bundles T4+ 75 in

the diagram (D-1), and we obtain

% _ atl 2n .2 _ 2
Consider the diagram (D-2) for Y = F(1), Let UnsV, be

homogeneous elements of H*((S” x F(1))/T) such that j*(uz)

= u, and j*(vz) = v,. Let t be the canonical generator of
2 a0 _ 2 ' - _ .2

H<(S8"/T) = H (PZn-1(C))‘ Then we can express 1¢iu2) = 1% xfq +

txf, + 1xf,, i%(v,) = txg, + 1xg,, where f,, g, are elements of

K(F). Since JEi(v3) = i¥(Bv3) = i¥(+2

obtain gg :‘ﬁ'1 and g, = 0. Moreover we see that gy is not

H ) = J%(t7x1), we

constant, and hence F is not connected. .Since j%ii(ug+1) =
0 and a+1 £ n-1, we obtain fO = 0 and hence ii(uz) =

txf1 + 1xf2. Let F1 (resp. F2) be the union of connected
components F, of F on which gOIFr is positive (resp.
negative). Then each element of Hk((Sw x Fs)/T) for k > jat2

is expressed as a polynomial of t x 1 and tx(f1(FS) + TX(fZJFS)



with rational coefficients for s = 1,2, because H*((S8% x F(1))/T
is generated by two elements wu,, v, as graded H*(S%/T)-algebra
and 1iX¥ is surjective for k > 4at2. In particular, if f1IFS

# 0, then we can express pha-1 o (f1iFS) =£§(cj(t X (f1lFs) +

1 ()P ) e x AT ror el e an Then we obbain co= 0,
c, =1 and f2lFS = - 02<f1[Fs)2' Therefore

H¥(F ) = Q[xsj/(xzﬂ) ; deg x = 2 or 4,

because 37! = 0 (k = 1,2) and A(F,) + X(Fy) -Z(F(,)) = 2a.
If Fs A/Pa(H) for some s, then F ﬂ/SO x Pa(H) by Lemma 2.Z2.
Thus we obtain P~ 8° x P_(H) or F~s’x P _(C). Finally we
shall show that i¥* : H2(F(1)) +~H2(F) is trivial for the case
r~osYox Pa(C). Consider the following commutative diagram

k¥

12 (M/T) ——1?H2(F(1>)

l if l i% i,i1,ko,k1 ¢ natural inclusions.
k3¢

H (P, . (C)xF) —% H*(F),

We see that k%(v1) generates HQ(F(1)) and i%(v1) =t x gy,

C %l = Lk - cx . opR
and hence i k1(v1) = ko(t X go) = 0., Thus 1i¥* : H (F(1>) -
H2(F) is trivial. g.e.d.
Suppose F A/SO X Pa(H). Then by Lemma 2.2, there is an
equivariant diffeomorphism : F(j) = Sp(1)/T x Y,, where Y, is

a connected component of F. Thus we obtain an equivariant

diffeomorphism
X=Xy = (shn-T 4 F(qy)/8p(1) = Py 4 (0) x T,

Consequently we obtain the following.
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Theorem 2.5. Let X Dbe a closed orientable manifold with

a non-trivial smooth Sp(n) action. Suppose n z 7, X = X( U

o
~—

i\
i

X(T) and X ﬂJPa(H) X Pb(c); 1< a <n-1, 1D 2n-1, 2n

Ratb < 4n-4. Then there are three cases
(a) a =n-1 and X is equivariantly diffeomorphic to

P (H) x Y., where Y, is a closed orientable manifold such

n-1

that T, v Pb(

(b) b = 2n-1 and X is equivariantly diffeomorphic to

C),

P2n_1(0) x Y,, where Y, 1is a closed orientable manifold
such that Y, A/Pa(H),
(c) b =2n-1 and X is equivariantly diffeomorphic to

(841’1_1 X YB)/Sp(1), where Y
2

3 1is a closed orientable Sp(1)

manifold such that YBrV'S 0

X Pa(H)’ F 87 x Pa(C) and
i% o : HZ(YB)-% H°(F) is trivial, where F denotes the fixed
point set of the restricted T action on YB' Conversely, if

Y satisfies the above conditions, then (SAn-1 X YB)/Sp(W) ~

3

P2n—1(C) X'Pa(H) for a £ n-2.

Remark. In the above theorem 2.5, it remains to prove the
final statement in the case (c). But the proof is omitted here.
To prove this, the condition that i* : H2(Y3) -§H2(F) is trivial

is not necessary for a > 1, but it can not be omitted for a = 1.

2-B. Next we consider the case X AzPa(C) X Pb(C).
By the same way as in the case 2-A, we have the following

Propositions. The proofs are omitted.

Proposition 2.6. Suppose X NfPa(C) x Pb(C), 1= b £a < 2n

<atb £ 4n-3. Then a = 2n-1 and F“)N 82 X Pb(C).
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0

Proposition 2.7. F ~ S° x P, (C).

B
Consequently we obtain the following.

Theorem 2.8, Let X be a‘closed orientable manifold with
a non-trivial smooth Sp(n) action. Suppose n =7, X = X(O)b’x(j)
and X~ Pa(C) X Pb(C), 1< b= a< 2n = atb = 4n-3. Then
a = 2n-1 and X 1is equivariantly diffeomorphic to P2n—1(c) x g,

where YO is a closed orientable manifold such that YO nsz(C).

3. Cohomologies of certain homogeneous spaces

In this section, we give the cohomologies of Vn,g/G =
Sp(n)/Sp(n-2) x G for certain closed connected subgroups G
of Sp(n). The results are as follows. The actual proofs are
omitted here (see (8]).

Lemma 3.1. H*(VH,Q/Sp(1) x Sp(1)) = QlLu,vl/(u", ftuivn_1-i),
b o
Lemma 3.2. H*(Vn,z/T2) = Q[x,y]/(xzn,-% X2iy2n_2_2i),

1}

deg u = deg v

deg x = deg y = 2.
Lemma 3.3. The graded algebra H*(Vn 2/Sp(2)) is

isomorphic to the subalgebra of Q[u,vl/(u", in-1-1

M
c
<

consisting of symmetric polynomials, where deg u = deg v = 4.

Lemma 3.4. The graded algebra H‘X‘(Vn 2/U(2)) is

isomorphic to the subalgebra of Q[x,Y]/(xQn, %?X21y2n—2—21),

consisting of symmetric polynomials, where deg x = deg y = 2.

Lemma 3.5. The graded algebra H*(Vn 2/U(1) x Sp(1)) is

isomorphic to the subalgebra of Qﬂx,yj/(xzn X21y2n_2_21)

H e
<

generated by x2, Ve



From these lemmas, we have
Propositon 3.6. Let G be one of T2, U(2) and
U(1) x Sp(1). Let Wis Wy be any non-zero homogeneous elements

of H*(V, 5/G) such that deg w, = 2k. Then wffH and

wg‘T are non-zero elements.

4+ Finish of the proof

Throughout this section, suppose that n =7 and X 1is a
closed orientable manifold with a non-trivial smooth Sp(n)
action, and X:AJPa(C) X Pb(C) for some a, b such that

1< b<a<2n< atbh = 4in-3,
or X «~ P, (H) x Ri(C) for some ¢, d such that

1

i

c =n-1, 1 «d = 2n-1 and 2n £ 2ct+td £ 4n-4.

Then, from the results in the section 3, we can show that
X(Z) and X(B) are empty sets. That is, we can prove the
follwoing Propositions. We shall give here the outline of

the proofs of those Propositions (see [8] for the details).

Proposition 4.1. X # X(k) s ko= 2,3,

(Outline of the proof) Suppose X = X(x) - Then X =
(Sp(n)/Sp(n-k) x F“{))/Sp(k). In particular, we obtain)}((X)
= nCx XF(x)). From this fact, we see that k # 3 and the
possibilities remain only in the following'cases

(a) dim Frp) =8, A(F,y) =85 (a,b) = (2n-1,2n-3),

(b) dim Fpy = 6, A(F,y) = 43 (c,d)

1

(n-1,2n-3), (n-2,2n-1),
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If dim Fooy =4, then X = Vn,Z/ Sp(1) x Sp(1) or

Vn 2/Sp(2) X F(Z)’ and hence (c) does not happen by Lemmas
’

3.1 and 3.3.

In the cases (a), (b), if the Sp(2) action on F(Z) is

s 2

transitive, then X = Vn,Z/T , Vn,Z/U(z) or Vn,2/U(1) x Sp(T){
and hence such cases do not happen by Proposition 3.6. So the
remainder of the possibilities is as follows ¢ in each case

below, Sp(2) action on F(Z) is not transitive,

(a)! +the case (a) and the restricted G action on F(2)
has a fixed point, where G = U(2) or U(1) x Sp(1),

(b)'" +the case (b) and the Sp(2) action on F(2)

is trivial,

(¢c)' the case (b) and the Sp(R) action on F<2>

has no fixed point,

(d)' the case (b) and the Sp(2) action on F(Z)

has a fixed point but this action is not trivial.

Consider the case (a)'. Then the natural projection 7, :

(Vn,2 X F(Z))/G $>Vn 2/G has a cross section s, and we have

the following commutative diagram :

(V. x B0 /G v /G
n’2 (2) n,2
A —
5 /L'I! 7(:2; Py Q
l o} j/p natural projections.

X = (U, 5 x F(y))/8p(2) <25 v /sp(2),

From this diagram and the cohomologies of V_ 2/Sp(2) and

v 2/G (see Lemmas 3.1,3.4 and 3.5), we can see that if X ~v
?

P_(C) x P,(C), then p*|H*(V_ ,/Sp(2)) is not injective.

‘b(



This is a contradiction.

If F( is such as in the case (b)', then X =

2)
Vn,Z/Sp(Z) X F(z), and hence such a case does not happen by
Lemma 3.3.

If F(Z) is such as in the case (c)', then we can see that
the identity component of an isotropy subgroup is conjugate to
Sp(1) x Sp(1) and that the fixed point set F of the restricted
Sp(1) x Sp(1) action on F(Z) is a closed orientable surface
with AX(F) = 4 and F has at most two components. Therefore
X = (Vn’z/Sp(1) x Sp(1)) x 82, and hence such a case does not |
happen by Lemma 3.1.

Finally consider the case (d)'. Then we see that the
fixed point set F! of the Sp(2) action is 4-dimensional,
and the identity component of the other isotropy subgroup is
conjugate to Sp(1) x Sp(1). Let U Dbe a closed tubular
neighbourhood of F', and let F'' Dbe the fixed point set of
the restricted Sp(1) x Sp(1) action on F(Z) - int U. Then
we see that F'' is a compact orientable surface with X (F'')
= 4, F'' has at most two components and each component of F'!
has a non-empty boundary. Such a case does not happen, because

X <1 for each compact connected orientable surface with

non-empty boundary.

Proposition 4.2. If X(j) is non-empty, then X(Z) is

empty.

(Outline of the proof) Suppose that both of X(1), X(2)

are non-empty. Then X = X(1)\/ X(py and codim Fy = 8n-8



o

by Propositions 1.3, 1.4. Since dim X = 8n-6, we obtain

dim F = 0 or 2. Then we have the followin ossibilities
(1) g P

(a) the Sp(1) action on F(1) 1is non-trivial,

(b) the Sp(1) action on F(q) is trivial, and

(b.1) dim F(1) 0 ; (a,b) = (2n-1,2n-3) or (2n-2,2n-2),
(c,d)

2 3 (a,b) = (2n-1,2n-2).

(n-1,2n-2),

1l

fl

or (b.2) dim F(1)

For each case above, we first investigate the possibilities of
the orbit types. And, from the results (in the section 3) about
the cohomologies of such orbits, we deduce that those cases
do not happen. For example, consider the case (a). Then
dim F(4) = 2, and X ~ Pop_4(C) x Poy_2(C). Considering the
slice representation at a point of F(1), we see that the
Sp(n) action on X has a codimension one orbit, and hence
X is a union of closed invariant tubular neighbourhoods of
just two non-principal orbits (cf. [4J1). Calculating the
Euler characteristics, we see that two non-principal orbits
are Pzn_1(C) and Vn’g/TQ. Since codim Pp,_q(C) = 4n-4
in X, the inclusion i : Vn’2/T2 - X induces an isomorphism
i% e HZ(X) e>H2(Vn’2/T2), and hence X2n-1 # 0 for each
non-zero element x & HQ(X) by Proposition 3.6. This is
a contradiction.

Similarly, we can deduce a contradiction for the case
(b.1). The proof for the case (b.2) is a little moee

complicated than that for the above two cases, but we omit it here.



159

Under the consideration of the section 1, we obtain the

main theorem stated in Introduction, by combining Theorems

2.5, 2.8 and Propositions 4.1, 4.2. The full proofs of the

results in this paper will appear in [8],
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