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THE OBSTACLE PROBLEM AND ITS APPLICATION

MAKOTO SAKAT ( Bfik# 284 &)

We shall be concerned with one of the application of the
obstacle problem. For the obstacle problem and resu1£s relating
to quadrature domains, sée [5] énd [6].

Our subject is the fo;ce of gravity. It was the main subject
in classical potential theory. In this note, we take up two

phenomena. Both of them go back to Newton.

I. A homogeneous ball attracts a particle as if the ball

were concentrated at its center.

According to Newton's law of universal gravitation, two parti-
cles attract each other with a force whose direction is that of
the line joining the two, and whose magnitude(is directly as the
product of their masses, and inversely as the square of their
distance.

For tontinuously distributed bodies, for example, a homogene-
ous ball B with centered at ¢ ( or, solid sphere ), we use the
method of the intégfal calculus to know what the whole fofce
attracts a particle.

For this homogeneous ball, it attracts a particle as if the
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ball were concentrated at its center. It is well known that this
phenomenon was discovered by Newton. We write this by the equa-
tion
YIX 4y = m(B)-SX for x € R> \ B, :
3 3
Bly-x| |c-x|

where m(B) denotes the volume of B and we have assumed the density
is equal to 1 everywhere on B.

The second we shall treat is the following:

IT. In the cavity of an ellipsoidal homoeoid, the force of

gravity 1is null.

It is natural to consider what the whole force attracts a par-

ticle when it is inside of the ball. In the above, the particle
x is outside of the ball. It is not difficult to show that
J —Xl§—§dy = m(Bx)—ELE—g for x € B \ {c}
Bly-x| |c-x|
0 | for x = ¢,

where B denotes a closed ball with centered at ¢ and radius lc-x|.

The point x is on the boundary 9B, of B, .




From this we see that if we fix the inner and outer balls B, B'
with the same center, then a particle inside of the inner ball is
not attracted to any direction by thé whole force produced by B'\B.
Namely, a homogeneous body bounded by concentric spheres exercises
no attraction in the cavity. Newton discovered another example
of a body which has a cavity of null force of gravity. It is an
ellipsoidal homoeoid. For the sake of simplicity, we take the

origin as its center and write
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E={x = (X1,X5,X3) | k .

where a, are positive constants and k is a constant satisfying

0<k<1. ' C

Fig. 2

What was proved by Newton is expressed by

_ X 2 2
J—u—s-dy=0 if n(2) < k%,

E|ly-x| i
It is natural to ask "Are there any domains other than balls

which attract a particle as if they were concentrated at one

point?'" and "Are there any domains other .than ellipsoidal



homoeoids having a cavity of null attraction?".

We shall discuss these problems in this note. It is somewhat
surprising that the answers were given quite recently whereas the
questions ‘seem to be open for a long time. After giving a brief
explanation on the known results, we give new results. Explain-
ing roughly, the answer for the first question is '"No." and that
for the second is "Yes.". There are several interesting problems

still open in the area.

The known results

We summarise here the known results.

I. Let us consider an open set Q@ satisfying
(%) J&de=m(9)-— X3 for x € R> \ Q.
Qly-x| | | x|

We have taken the origin for c and from now, we consider open
sets instead of closed sets. From a result given by Kuran [3],

we can easily deduce the following theorem:

THEOREM A. If Q satisfies (%), © is bounded, the exterior Q°
of @ is connected and 38Q = B(Qe), then @ = B and B is a ball

with centered at 0 and m(Q) = m(B).

Aharonov, Schiffer and Zalcman [1] deleted superfluous condi-

tions.

THEOREM B. If @ satisfies (%) and fgl/lx[dx < o, then Q is
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a ball as in Theorem A.
They also treated the case that 2 has a smooth radial density.

THEOREM C. If @ satisfies

XX dy = | dy+ - £ R\ @
i hey = [wlyDay Xy forxem

o

and

where w € ClﬂR) satisfies w 2 W for some positive constant LAY

then @ = B and B is a ball with centered at 0 and S w(|y[)dy =

Sgw(ly[)dy.
IT. For the second phenomenon, I do not know what results are
known. But I guess that someone found out the following example:

THEOREM D. An infinite tube whose cross section is a domain
surrounded by similar ellipses with the same axes has a cavity of

null force of gravity.
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There are two proofs on the fact that an ellipsoidal homoeoid has
a cavity of null force field. Newton's proof is the following.
Let x be‘a point in the cavity. Let C be a small cone with vertex
at x and consider a body CNE, the intersection of C and E. Here
"small" means small solid angle. Then {-(C-x)+x}nE produces the
force whose direction is opposite that produced by CNE and whose
magnitude is the same as that produced by CnE. And so, two forces
are cancelled out each other and we see that the force field in
this cavity is null.

By the same reason, we see that in the cavity of the infinite
tube in Theorem D, the force field is null. It seems to be diffi-
cult to construct another example than ellipsoidal homoeoids and
infinite tubes by applying the previous argument.

The second probf on an ellipsoidal homoeoid is done by calculat-
ing the Newton potential of an ellipsoid which has no cavites and
subtruct the potentail of a similar and smaller ellipsoid with the
same axes from it. Then we see that the resulting potentail is
constant in the cavity, see Kellogg [2]. But, the calculation of
the Newton potentail of an ellipsoid is not easy. To calculate
the Newton potential of a given domain is difficult in general, so
it is difficult to cbnstruct another example by calculating the
Newton potential.

It seems that Newton was very lucky, because it looks like as
if there are no elementary domains with null-gravitational cavities
except eilipsoidal homoeoids. Here '"an elementary domain"

means a bounded domain surrounded by closed surfaces expressed by



elementary functions. The proof is not given yet, but it seems

to be true.

Formulations and new results

Let w be a measurable function satisfying W SWEW, iniR3 for

some positive constants Wy and Wy We shall call this the den-

sity function or the weight function.

I. Let v(3#0) be a finite positive measure onims with compact
support. Now we define an equi-gravitational domain and give its

example.

DEFINITION. An equi-gravitational domain © of v with weight

w is an open subset ofiR3 satisfying

1 VRN = o,
(2) J V_V(_Y_)z.dy < w,

alyl
(3) J —XLE——dv(y) = J —XQE——w(y)dy for every x €

3 3
2|y-x| 2ly-x|
R3\Q with J D) < w,
Qly-x|
EXAMPLE. A ball B with centered at c¢ is an equi-gravitational

domain of m(B)-SC with weight 1, where 6C denotes the point meas-

ure at c.

Next we give three theorems on equi-gravitational domains.
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THEOREM 1, If

(a) v is a singular measure with respect to the 3-
dimensional Lebesgue measure m
or
(b) dv = fdm, f € LlﬂRS), f > w on a bounded domain D

with smooth boundary and f = 0 on]R3 \ D,

then there exists an equi-gravitational domain of v with weight w.

An outline of the proof. Take a sufficiently large ball B,

and set y = G(wXBm)-Gv,wheIe GX denotes the Green potential of A
on B and Xg denotes the characteristic function of B. Consider
the solution u of the obstacle problém with obstacle ¢. Then

Q = {xeB| u(x)-y(x) > 0} is an equi-gravitational domain.

THEOREM 2. Equi-gravitational domains of v with weight w are

uniformly bounded.

An outline of the proof. For a positive measure A onﬁRS, we

define a vector valued function X by

e
" (%) Jmly-xﬁdM”

in a domain where f(l/ly—xlz)dX(y) < o, Let B(r) be a ball with

radius r and centered at the origin. Then
(==, Zpdo(y) = |4n x € B(r)
ly-x|> Pl
9B(1)
0 x ¢ B(r),



where o denotes the surface element of oB(r). Hence

1 > ' |
zaf (), Ppdoly) = -A(B(r)
. 3B(r) ,

for r > 0 with

—L () do(y) < =,
y€EIB (1) ZeR° |2~y )
Therefore
[ v fav - 2 Gm - o) o), Ep sy
QB (1) " 3B (x) T

for r satisfying supp v < B(r).
Since v(y) = (wxg) () on R*\@)naB(r),

1

[ Q—

wdm - Jdv < 7

Is(y)v - (wxg) () ldo(y) .

‘JQHB(r) fﬂnaB(r)

Set\v(r)‘= fonan (¥ () doy), then

[zv(t)dt - jdv < V(r)l+%(A + Blog;?f;T77)
for some constants A,B and for r with small r/v(r)l/z, see [4,pp.
92-947. Since f?v(t)/tzdt < o, we éﬁh apply Lemma1L1l in [4],

use the same argument as in [4,pp.94-95] and obtain fzv(t)dt < o,

Hence

1
s,v(r)l+7(a + blOgVT%T)

J;v(t)dt— Jdv

for some constants a , b, and so fzv(t)dt = [dv,

1
V(r)l+7(a + blogVT%T)

IA

Jwv(t)dt
T



for some constants a, b and for r with small v(r). Therefore

the theorem follows from the following lemma:

LEMMA. Let v(r) be a nonnegative integrable function on [0,+x)

satisfying

A

fmv(r)dt v(r) 1" + blogyriy)

r

for every r with 0 £ v(r) £ 1/e, where a,b and ¢ are constants with

az0,bz0, c>0, and the right-hand side is equal to 0 if v(r) :
0. Then v vanishes almost everywhere on [el/cfzvdt+c, +o) . where
C = {(1+c)a+(1+2¢ Hybrcte L,

THEOREM 3. If @ is an equi-gravitational domain of v with ra-

dial weight w satisfying

(i) supp v < @,

(i1) Q% is connected, 3Q is smooth and 39 = B(Qe),
(iidi) _ _ : :
j L= dv(y) + J L (|y])dy for x € Q\supp v
2ly-x| aly-x|
then @ is the unique equi-gravitational domain containing supp V.
Here '"radial" means w(y) = w(|y]|) on R,
We omit the proof. We note that the result given by Aharonov,
Schiffer and Zalcman can be improved. As we have pointed out in

Example, a ball B is an equi-gravitational domain of m(B)«% with
weight 1. It is easy to show that the ball satisfies (i) to (iii)
in Theorem 3, and so the ball is the uniqe equi-gravitational

domain. Thus we have solved Rubel's problem cited in [1].
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COROLLARY . If Q satisfies (%) and fgl/lxlzdx < o, then @ is

a ball as in Theorem A.

IT. Next we give the definition of a domain with null cavity

and its existence theorem.

DEFINITION. An open subset&)ofﬁms is called a domain with null

cavity under weight w if

XX _w(y)dy = 0
L?ly-><|3

for every x in some component C of 0. We call this component C

a null cavity.

It 1is somewhat surprising that there are many domains with null

cavity.
THEOREM 4. Let D be a bounded connected open set with smooth
boundary such that D® is connected. Then, for every neighborhood

N of 38D, there is a domain @ with null cavity such that @ < N and

f VX y(y)dy = 0
aly-x|

for every x € D\Q.
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An outline of the proof. Take an equilibrium mass distribution

v for D, for example, the capacitary mass distribution for D.

Then it is concentrated on 3D and its potential is constant in D.
Let € be a positive constant and set wg = G(wXBm) - G(ev) as in
the proof of Theorem 1. Then Q. = {XEBI ue(x) - we(x) > 0},
where u. is the solution of the obstacle problem with obstacle Ve s
satisfies

J —X;§—§w(y)dy =0 for every x € D\ Q.
a_ly-x|

By taking € so that Qg c N and setting Q = Qe’ we obtain the re-

quired domain Q.

From the proof given here, we can also construct a domain having

a finite number of null cavity.
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